These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
224 related items for PubMed ID: 30077126
21. Oysters and eelgrass: potential partners in a high pCO2 ocean. Groner ML, Burge CA, Cox R, Rivlin ND, Turner M, Van Alstyne KL, Wyllie-Echeverria S, Bucci J, Staudigel P, Friedman CS. Ecology; 2018 Aug; 99(8):1802-1814. PubMed ID: 29800484 [Abstract] [Full Text] [Related]
22. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. Ivanina AV, Hawkins C, Sokolova IM. Fish Shellfish Immunol; 2014 Apr; 37(2):299-312. PubMed ID: 24594010 [Abstract] [Full Text] [Related]
23. Seawater acidification increases copper toxicity: A multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas. Cao R, Zhang T, Li X, Zhao Y, Wang Q, Yang D, Qu Y, Liu H, Dong Z, Zhao J. Aquat Toxicol; 2019 May; 210():167-178. PubMed ID: 30870663 [Abstract] [Full Text] [Related]
25. Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): A biokinetic model for zinc. Lee JH, Birch GF, Cresswell T, Johansen MP, Adams MS, Simpson SL. Aquat Toxicol; 2015 Oct; 167():46-54. PubMed ID: 26261879 [Abstract] [Full Text] [Related]
26. The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring. Robinson WA, Maher WA, Krikowa F, Nell JA, Hand R. J Environ Monit; 2005 Mar; 7(3):208-23. PubMed ID: 15735780 [Abstract] [Full Text] [Related]
28. Ocean acidification increases copper toxicity to the early life history stages of the polychaete Arenicola marina in artificial seawater. Campbell AL, Mangan S, Ellis RP, Lewis C. Environ Sci Technol; 2014 Aug 19; 48(16):9745-53. PubMed ID: 25033036 [Abstract] [Full Text] [Related]
29. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. Carter HA, Ceballos-Osuna L, Miller NA, Stillman JH. J Exp Biol; 2013 Apr 15; 216(Pt 8):1412-22. PubMed ID: 23536589 [Abstract] [Full Text] [Related]
34. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect. Ertl NG, O'Connor WA, Elizur A. Mar Genomics; 2019 Feb 15; 43():19-32. PubMed ID: 30478017 [Abstract] [Full Text] [Related]
35. Resilience against the impacts of climate change in an ecologically and economically significant native oyster. Parker LM, Scanes E, O'Connor WA, Dove M, Elizur A, Pörtner HO, Ross PM. Mar Pollut Bull; 2024 Jan 15; 198():115788. PubMed ID: 38056289 [Abstract] [Full Text] [Related]
39. Differential proteomic response of Sydney rock oysters (Saccostrea glomerata) to prolonged environmental stress. Melwani AR, Thompson EL, Raftos DA. Aquat Toxicol; 2016 Apr 15; 173():53-62. PubMed ID: 26844780 [Abstract] [Full Text] [Related]
40. Physiological costs of reproduction in the Sydney rock oyster Saccostrea glomerata. How expensive is reproduction? Honkoop PJ. Oecologia; 2003 Apr 15; 135(2):176-83. PubMed ID: 12698338 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]