These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
401 related items for PubMed ID: 30077461
1. Monolithic alkylsilane column: A promising separation medium for oligonucleotides by ion-pair reversed-phase liquid chromatography. Qiao JQ, Liang C, Zhu ZY, Cao ZM, Zheng WJ, Lian HZ. J Chromatogr A; 2018 Sep 28; 1569():168-177. PubMed ID: 30077461 [Abstract] [Full Text] [Related]
2. Monolithic silica rod columns for high-efficiency reversed-phase liquid chromatography. Miyazaki S, Takahashi M, Ohira M, Terashima H, Morisato K, Nakanishi K, Ikegami T, Miyabe K, Tanaka N. J Chromatogr A; 2011 Apr 15; 1218(15):1988-94. PubMed ID: 21176839 [Abstract] [Full Text] [Related]
3. Investigation of a new core-shell particle column for ion-pair reversed-phase liquid chromatography analysis of oligonucleotides. Biba M, Welch CJ, Foley JP. J Pharm Biomed Anal; 2014 Aug 05; 96():54-7. PubMed ID: 24727281 [Abstract] [Full Text] [Related]
4. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains. Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N. Anal Chem; 2006 Nov 15; 78(22):7632-42. PubMed ID: 17105153 [Abstract] [Full Text] [Related]
5. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns. Biba M, Jiang E, Mao B, Zewge D, Foley JP, Welch CJ. J Chromatogr A; 2013 Aug 23; 1304():69-77. PubMed ID: 23859796 [Abstract] [Full Text] [Related]
6. Evaluation of core-shell particle columns for ion-pair reversed-phase liquid chromatography analysis of oligonucleotides. Biba M, Welch CJ, Foley JP, Mao B, Vazquez E, Arvary RA. J Pharm Biomed Anal; 2013 Jan 23; 72():25-32. PubMed ID: 23146223 [Abstract] [Full Text] [Related]
7. [Prediction of n-octanol/water partition coefficient of strongly ionized compounds by ion-pair reversed-phase liquid chromatography with silica-based stationary phase]. Liu X, Gao W, Liang C, Qiao J, Wang K, Lian H. Se Pu; 2021 Nov 23; 39(11):1230-1238. PubMed ID: 34677018 [Abstract] [Full Text] [Related]
8. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies. Fekete S, Veuthey JL, Eeltink S, Guillarme D. Anal Bioanal Chem; 2013 Apr 23; 405(10):3137-51. PubMed ID: 23358675 [Abstract] [Full Text] [Related]
9. Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography. Jandera P, Urban J, Skeríková V, Langmaier P, Kubícková R, Planeta J. J Chromatogr A; 2010 Jan 01; 1217(1):22-33. PubMed ID: 19800628 [Abstract] [Full Text] [Related]
10. Kinetic performance comparison of superficially porous, fully porous and monolithic reversed-phase columns by gradient kinetic plots for the separation of protein biopharmaceuticals. Jaag S, Wen C, Peters B, Lämmerhofer M. J Chromatogr A; 2022 Aug 02; 1676():463251. PubMed ID: 35752149 [Abstract] [Full Text] [Related]
11. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F, Guiochon G. J Chromatogr A; 2012 May 18; 1238():77-90. PubMed ID: 22503619 [Abstract] [Full Text] [Related]
12. [Effects of buffer salt types and non-counter ions of ion-pair reagents on the retention behavior of strongly ionized acid compounds in ion-pair reversed-phase liquid chromatography]. Liu X, Gao W, Liang C, Qiao J, Wang K, Lian H. Se Pu; 2021 Sep 18; 39(9):1021-1029. PubMed ID: 34486842 [Abstract] [Full Text] [Related]
13. Cyclodextrins as a chiral mobile phase additive in nano-liquid chromatography: comparison of reversed-phase silica monolithic and particulate capillary columns. Rocco A, Maruška A, Fanali S. Anal Bioanal Chem; 2012 Mar 18; 402(9):2935-43. PubMed ID: 22349325 [Abstract] [Full Text] [Related]
14. Isolation and quantification of dinucleoside polyphosphates by using monolithic reversed phase chromatography columns. Jankowski V, Vanholder R, Henning L, Karadogan S, Zidek W, Schlüter H, Jankowski J. J Chromatogr B Analyt Technol Biomed Life Sci; 2005 May 05; 819(1):131-9. PubMed ID: 15797530 [Abstract] [Full Text] [Related]
15. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides. Jakschitz TA, Huck CW, Lubbad S, Bonn GK. J Chromatogr A; 2007 Apr 13; 1147(1):53-8. PubMed ID: 17350637 [Abstract] [Full Text] [Related]
16. Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns. Detobel F, Broeckhoven K, Wellens J, Wouters B, Swart R, Ursem M, Desmet G, Eeltink S. J Chromatogr A; 2010 Apr 30; 1217(18):3085-90. PubMed ID: 20347095 [Abstract] [Full Text] [Related]
17. Effects of pressure and frictional heating on protein separation using monolithic columns in reversed-phase chromatography. Mann BF, Makarov AA, Wang H, Welch CJ. J Chromatogr A; 2017 Mar 17; 1489():58-64. PubMed ID: 28193469 [Abstract] [Full Text] [Related]
18. Comprehensive two-dimensional monolithic liquid chromatography of polar compounds. Jandera P, Hájek T, Šromová Z. J Sep Sci; 2019 Feb 17; 42(3):670-677. PubMed ID: 30488658 [Abstract] [Full Text] [Related]