These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Monte Carlo on the manifold and MD refinement for binding pose prediction of protein-ligand complexes: 2017 D3R Grand Challenge. Ignatov M, Liu C, Alekseenko A, Sun Z, Padhorny D, Kotelnikov S, Kazennov A, Grebenkin I, Kholodov Y, Kolosvari I, Perez A, Dill K, Kozakov D. J Comput Aided Mol Des; 2019 Jan; 33(1):119-127. PubMed ID: 30421350 [Abstract] [Full Text] [Related]
6. Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016. Fradera X, Verras A, Hu Y, Wang D, Wang H, Fells JI, Armacost KA, Crespo A, Sherborne B, Wang H, Peng Z, Gao YD. J Comput Aided Mol Des; 2018 Jan; 32(1):113-127. PubMed ID: 28913710 [Abstract] [Full Text] [Related]
9. Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges. Nguyen DD, Cang Z, Wu K, Wang M, Cao Y, Wei GW. J Comput Aided Mol Des; 2019 Jan; 33(1):71-82. PubMed ID: 30116918 [Abstract] [Full Text] [Related]
10. Improved pose and affinity predictions using different protocols tailored on the basis of data availability. Prathipati P, Nagao C, Ahmad S, Mizuguchi K. J Comput Aided Mol Des; 2016 Sep; 30(9):817-828. PubMed ID: 27714493 [Abstract] [Full Text] [Related]
11. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3. He X, Man VH, Ji B, Xie XQ, Wang J. J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199 [Abstract] [Full Text] [Related]