These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 30084388
1. A speed-adaptive intraspinal microstimulation controller to restore weight-bearing stepping in a spinal cord hemisection model. Dalrymple AN, Everaert DG, Hu DS, Mushahwar VK. J Neural Eng; 2018 Oct; 15(5):056023. PubMed ID: 30084388 [Abstract] [Full Text] [Related]
3. Pavlovian control of intraspinal microstimulation to produce over-ground walking. Dalrymple AN, Roszko DA, Sutton RS, Mushahwar VK. J Neural Eng; 2020 Jun 02; 17(3):036002. PubMed ID: 32348970 [Abstract] [Full Text] [Related]
4. Restoring stepping after spinal cord injury using intraspinal microstimulation and novel control strategies. Holinski BJ, Mazurek KA, Everaert DG, Stein RB, Mushahwar VK. Annu Int Conf IEEE Eng Med Biol Soc; 2011 Jun 02; 2011():5798-801. PubMed ID: 22255658 [Abstract] [Full Text] [Related]
6. Could cortical signals control intraspinal stimulators? A theoretical evaluation. Mushahwar VK, Guevremont L, Saigal R. IEEE Trans Neural Syst Rehabil Eng; 2006 Jun 02; 14(2):198-201. PubMed ID: 16792293 [Abstract] [Full Text] [Related]
7. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation. Lau B, Guevremont L, Mushahwar VK. IEEE Trans Neural Syst Rehabil Eng; 2007 Jun 02; 15(2):273-85. PubMed ID: 17601198 [Abstract] [Full Text] [Related]
8. Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats. Lecomte CG, Mari S, Audet J, Merlet AN, Harnie J, Beaulieu C, Abdallah K, Gendron L, Rybak IA, Prilutsky BI, Frigon A. J Neurophysiol; 2022 Dec 01; 128(6):1593-1616. PubMed ID: 36382895 [Abstract] [Full Text] [Related]
9. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. de Leon RD, Hodgson JA, Roy RR, Edgerton VR. J Neurophysiol; 1998 Mar 01; 79(3):1329-40. PubMed ID: 9497414 [Abstract] [Full Text] [Related]
10. A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion. Hurteau MF, Frigon A. J Neurosci; 2018 Nov 28; 38(48):10314-10328. PubMed ID: 30315129 [Abstract] [Full Text] [Related]
11. Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates. Giszter SF, Davies MR, Graziani V. Exp Brain Res; 2008 Sep 28; 190(1):53-69. PubMed ID: 18612631 [Abstract] [Full Text] [Related]
12. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Chang SR, Nandor MJ, Li L, Kobetic R, Foglyano KM, Schnellenberger JR, Audu ML, Pinault G, Quinn RD, Triolo RJ. J Neuroeng Rehabil; 2017 May 30; 14(1):48. PubMed ID: 28558835 [Abstract] [Full Text] [Related]
13. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements. Mushahwar VK, Gillard DM, Gauthier MJ, Prochazka A. IEEE Trans Neural Syst Rehabil Eng; 2002 Mar 30; 10(1):68-81. PubMed ID: 12173741 [Abstract] [Full Text] [Related]
14. Block-based robust control of stepping using intraspinal microstimulation. Rouhani E, Erfanian A. J Neural Eng; 2018 Aug 30; 15(4):046026. PubMed ID: 29761788 [Abstract] [Full Text] [Related]
15. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD. J Neurotrauma; 2007 Jun 30; 24(6):1000-12. PubMed ID: 17600516 [Abstract] [Full Text] [Related]
16. Novel spatiotemporal analysis of gait changes in body weight supported treadmill trained rats following cervical spinal cord injury. Neckel ND. J Neuroeng Rehabil; 2017 Sep 13; 14(1):96. PubMed ID: 28903771 [Abstract] [Full Text] [Related]
17. Physiologically based controller for generating overground locomotion using functional electrical stimulation. Guevremont L, Norton JA, Mushahwar VK. J Neurophysiol; 2007 Mar 13; 97(3):2499-510. PubMed ID: 17229823 [Abstract] [Full Text] [Related]
18. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input. Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R. J Neurotrauma; 1992 Mar 13; 9 Suppl 1():S119-28. PubMed ID: 1588602 [Abstract] [Full Text] [Related]
19. Neuromechanical Strategies for Obstacle Negotiation during Overground Locomotion following Incomplete Spinal Cord Injury in Adult Cats. Lecomte CG, Mari S, Audet J, Yassine S, Merlet AN, Morency C, Harnie J, Beaulieu C, Gendron L, Frigon A. J Neurosci; 2023 Aug 02; 43(31):5623-5641. PubMed ID: 37474307 [Abstract] [Full Text] [Related]
20. Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training. De Leon RD, Hodgson JA, Roy RR, Edgerton VR. J Neurophysiol; 1999 Jan 02; 81(1):85-94. PubMed ID: 9914269 [Abstract] [Full Text] [Related] Page: [Next] [New Search]