These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 3008758
1. Redox activities of antitumor anthracyclines determined by microsomal oxygen consumption and assays for superoxide anion and hydroxyl radical generation. Peters JH, Gordon GR, Kashiwase D, Lown JW, Yen SF, Plambeck JA. Biochem Pharmacol; 1986 Apr 15; 35(8):1309-23. PubMed ID: 3008758 [Abstract] [Full Text] [Related]
2. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Doroshow JH, Davies KJ. J Biol Chem; 1986 Mar 05; 261(7):3068-74. PubMed ID: 3005279 [Abstract] [Full Text] [Related]
3. Comparative redox activities of anthracyclines by microsomes from P388 cells and rat liver. Peters JH, Streeter DG, Johl JS, Gordon GR, Tracy M. Anticancer Res; 1987 Mar 05; 7(6):1189-91. PubMed ID: 3481682 [Abstract] [Full Text] [Related]
5. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Doroshow JH. Cancer Res; 1983 Feb 18; 43(2):460-72. PubMed ID: 6293697 [Abstract] [Full Text] [Related]
6. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Davies KJ, Doroshow JH. J Biol Chem; 1986 Mar 05; 261(7):3060-7. PubMed ID: 3456345 [Abstract] [Full Text] [Related]
7. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers. Mimnaugh EG, Gram TE, Trush MA. J Pharmacol Exp Ther; 1983 Sep 05; 226(3):806-16. PubMed ID: 6411900 [Abstract] [Full Text] [Related]
8. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar. Winston GW, Church DF, Cueto R, Pryor WA. Arch Biochem Biophys; 1993 Aug 01; 304(2):371-8. PubMed ID: 8394056 [Abstract] [Full Text] [Related]
9. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Kalyanaraman B, Perez-Reyes E, Mason RP. Biochim Biophys Acta; 1980 Jun 05; 630(1):119-30. PubMed ID: 6248123 [Abstract] [Full Text] [Related]
10. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Doroshow JH. Cancer Res; 1983 Oct 05; 43(10):4543-51. PubMed ID: 6309369 [Abstract] [Full Text] [Related]
11. Anthracycline-induced oxygen consumption and oxidative damage in rat liver microsomes are not necessarily coupled. A study with 8 structurally related anthracyclines. Sterrenberg L, Julicher RH, Goossens PA, Bast A, Noordhoek J. Free Radic Res Commun; 1985 Oct 05; 1(1):41-54. PubMed ID: 3939724 [Abstract] [Full Text] [Related]
12. The effect of the anthrapyrazole antitumour agent CI941 on rat liver microsome and cytochrome P-450 reductase mediated free radical processes. Inhibition of doxorubicin activation in vitro. Graham MA, Newell DR, Butler J, Hoey B, Patterson LH. Biochem Pharmacol; 1987 Oct 15; 36(20):3345-51. PubMed ID: 2823819 [Abstract] [Full Text] [Related]
16. In situ reactivity of electrochemically generated semiquinone on Emodin and its CuII/MnII complexes with pyrimidine based nucleic acid bases and calf thymus DNA: Insight into free radical induced cytotoxicity of anthracyclines. Mandal B, Mondal HK, Das S. Biochem Biophys Res Commun; 2019 Jul 30; 515(3):505-509. PubMed ID: 31171362 [Abstract] [Full Text] [Related]