These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
748 related items for PubMed ID: 30088275
1. Comparative performance assessment of beam hardening correction algorithms applied on simulated data sets. Cao W, Sun T, Fardell G, Price B, Dewulf W. J Microsc; 2018 Dec; 272(3):229-241. PubMed ID: 30088275 [Abstract] [Full Text] [Related]
2. Segmentation-free empirical beam hardening correction for CT. Schüller S, Sawall S, Stannigel K, Hülsbusch M, Ulrici J, Hell E, Kachelrieß M. Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493 [Abstract] [Full Text] [Related]
3. Empirical beam hardening correction (EBHC) for CT. Kyriakou Y, Meyer E, Prell D, Kachelriess M. Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751 [Abstract] [Full Text] [Related]
5. Correction of severe beam-hardening artifacts via a high-order linearization function using a prior-image-based parameter selection method. Oh D, Kim S, Park D, Choi S, Song H, Choi Y, Moon S, Baek J, Hwang D. Med Phys; 2018 Jun 29. PubMed ID: 29959771 [Abstract] [Full Text] [Related]
6. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging. So A, Imai Y, Nett B, Jackson J, Nett L, Hsieh J, Wisenberg G, Teefy P, Yadegari A, Islam A, Lee TY. Med Phys; 2016 Aug 29; 43(8):4821. PubMed ID: 27487900 [Abstract] [Full Text] [Related]
7. Comparison of automated beam hardening correction (ABHC) algorithms for myocardial perfusion imaging using computed tomography. Levi J, Wu H, Eck BL, Fahmi R, Vembar M, Dhanantwar A, Fares A, Bezerra HG, Wilson DL. Med Phys; 2021 Jan 29; 48(1):287-299. PubMed ID: 33206403 [Abstract] [Full Text] [Related]
10. Decoupling of bowtie and object effects for beam hardening and scatter artefact reduction in iterative cone-beam CT. Cai M, Byrne M, Archibald-Heeren B, Metcalfe P, Rosenfeld A, Wang Y. Phys Eng Sci Med; 2020 Dec 29; 43(4):1161-1170. PubMed ID: 32813233 [Abstract] [Full Text] [Related]
11. A general framework of noise suppression in material decomposition for dual-energy CT. Petrongolo M, Dong X, Zhu L. Med Phys; 2015 Aug 29; 42(8):4848-62. PubMed ID: 26233212 [Abstract] [Full Text] [Related]
12. Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI). Nelson BJ, Leng S, Shanblatt ER, McCollough CH, Koenig T. Med Phys; 2021 Mar 29; 48(3):1327-1340. PubMed ID: 33338261 [Abstract] [Full Text] [Related]
13. Beam Hardening Correction Using Cone Beam Consistency Conditions. Abdurahman S, Frysch R, Bismark R, Melnik S, Beuing O, Rose G. IEEE Trans Med Imaging; 2018 Oct 29; 37(10):2266-2277. PubMed ID: 29993714 [Abstract] [Full Text] [Related]
14. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system. Koubar K, Bekaert V, Brasse D, Laquerriere P. J Microsc; 2015 Jun 29; 258(3):241-52. PubMed ID: 25818096 [Abstract] [Full Text] [Related]
15. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography. Stenner P, Schmidt B, Allmendinger T, Flohr T, Kachelrie M. Invest Radiol; 2010 Jun 29; 45(6):314-23. PubMed ID: 20440212 [Abstract] [Full Text] [Related]
17. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses. Wellenberg RH, Boomsma MF, van Osch JA, Vlassenbroek A, Milles J, Edens MA, Streekstra GJ, Slump CH, Maas M. Eur J Radiol; 2017 Mar 29; 88():61-70. PubMed ID: 28189210 [Abstract] [Full Text] [Related]