These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 30089363
1. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. Xin X, Li P, Zhu Y, Shi L, Yuan J, Shen J. Langmuir; 2019 Feb 05; 35(5):1788-1797. PubMed ID: 30089363 [Abstract] [Full Text] [Related]
2. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X, Yuan J, Shen J. Colloids Surf B Biointerfaces; 2016 Sep 01; 145():275-284. PubMed ID: 27208441 [Abstract] [Full Text] [Related]
3. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties. Asha AB, Chen Y, Zhang H, Ghaemi S, Ishihara K, Liu Y, Narain R. Langmuir; 2019 Feb 05; 35(5):1621-1630. PubMed ID: 30558423 [Abstract] [Full Text] [Related]
4. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Li M, Neoh KG, Xu LQ, Wang R, Kang ET, Lau T, Olszyna DP, Chiong E. Langmuir; 2012 Nov 27; 28(47):16408-22. PubMed ID: 23121175 [Abstract] [Full Text] [Related]
5. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities. Wu C, Zhang G, Xia T, Li Z, Zhao K, Deng Z, Guo D, Peng B. Mater Sci Eng C Mater Biol Appl; 2015 Oct 27; 55():155-65. PubMed ID: 26117750 [Abstract] [Full Text] [Related]
6. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. Xu D, Su Y, Zhao L, Meng F, Liu C, Guan Y, Zhang J, Luo J. J Biomed Mater Res A; 2017 Feb 27; 105(2):531-538. PubMed ID: 27737518 [Abstract] [Full Text] [Related]
7. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Jia Z, Xiu P, Li M, Xu X, Shi Y, Cheng Y, Wei S, Zheng Y, Xi T, Cai H, Liu Z. Biomaterials; 2016 Jan 27; 75():203-222. PubMed ID: 26513414 [Abstract] [Full Text] [Related]
8. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. Sileika TS, Kim HD, Maniak P, Messersmith PB. ACS Appl Mater Interfaces; 2011 Dec 27; 3(12):4602-10. PubMed ID: 22044029 [Abstract] [Full Text] [Related]
9. Functionalization of Polydopamine via the Aza-Michael Reaction for Antimicrobial Interfaces. Liu CY, Huang CJ. Langmuir; 2016 May 17; 32(19):5019-28. PubMed ID: 27118187 [Abstract] [Full Text] [Related]
10. Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization. Fan YJ, Pham MT, Huang CJ. Langmuir; 2019 Feb 05; 35(5):1642-1651. PubMed ID: 30114915 [Abstract] [Full Text] [Related]
11. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Kwon HJ, Lee Y, Phuong LT, Seon GM, Kim E, Park JC, Yoon H, Park KD. Acta Biomater; 2017 Oct 01; 61():169-179. PubMed ID: 28782724 [Abstract] [Full Text] [Related]
12. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. Fan L, Xie J, Zheng Y, Wei D, Yao D, Zhang J, Zhang T. ACS Appl Mater Interfaces; 2020 May 13; 12(19):22225-22236. PubMed ID: 32315157 [Abstract] [Full Text] [Related]
13. Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Jatoi AW, Kim IS, Ni QQ. Carbohydr Polym; 2019 Mar 01; 207():640-649. PubMed ID: 30600049 [Abstract] [Full Text] [Related]
14. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Wang Y, Shen J, Yuan J. J Colloid Interface Sci; 2016 Oct 15; 480():205-217. PubMed ID: 27442148 [Abstract] [Full Text] [Related]
15. Polydopamine-Assisted Silver Nanoparticle Self-Assembly on Sericin/Agar Film for Potential Wound Dressing Application. Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, He H. Int J Mol Sci; 2018 Sep 21; 19(10):. PubMed ID: 30248951 [Abstract] [Full Text] [Related]
16. Antimicrobial and physicomechanical natures of silver nanoparticles incorporated into silicone-hydrogel films. Mourad R, Helaly F, Darwesh O, Sawy SE. Cont Lens Anterior Eye; 2019 Jun 21; 42(3):325-333. PubMed ID: 30827719 [Abstract] [Full Text] [Related]
17. Synergistic antibacterial and antifouling wound dressings: Integration of photothermal-activated no release and zwitterionic surface modification. Li YH, Huang ZJ, Zhang JQ, Ye MN, Jun M, Wang W, Chen XL, Wang GH. Int J Pharm; 2024 May 25; 657():124160. PubMed ID: 38663642 [Abstract] [Full Text] [Related]
18. In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. Lu Z, Xiao J, Wang Y, Meng M. J Colloid Interface Sci; 2015 Aug 15; 452():8-14. PubMed ID: 25909867 [Abstract] [Full Text] [Related]
19. Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly. Xie Y, Chen L, Zhang X, Chen S, Zhang M, Zhao W, Sun S, Zhao C. J Colloid Interface Sci; 2018 Jan 15; 510():308-317. PubMed ID: 28957747 [Abstract] [Full Text] [Related]
20. Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms. Mao S, Zhang D, He X, Yang Y, Protsak I, Li Y, Wang J, Ma C, Tan J, Yang J. ACS Appl Mater Interfaces; 2021 Jan 20; 13(2):3089-3097. PubMed ID: 33400490 [Abstract] [Full Text] [Related] Page: [Next] [New Search]