These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 30091906

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Copper-Oxo Active Sites for Methane C-H Activation in Zeolites: Molecular Understanding of Impact of Methane Hydroxylation on UV-Vis Spectra.
    Adeyiga O, Suleiman O, Odoh SO.
    Inorg Chem; 2021 Jun 21; 60(12):8489-8499. PubMed ID: 34097398
    [Abstract] [Full Text] [Related]

  • 23. Theoretical study of aromatic hydroxylation of the [Cu2(H-XYL)O2]2+ complex mediated by a side-on peroxo dicopper core and Cu-ligand effects.
    Liu YF, Shen J, Chen SL, Qiao W, Zhou S, Hong K.
    Dalton Trans; 2019 Dec 07; 48(45):16882-16893. PubMed ID: 31621734
    [Abstract] [Full Text] [Related]

  • 24. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.
    Shiota Y, Juhász G, Yoshizawa K.
    Inorg Chem; 2013 Jul 15; 52(14):7907-17. PubMed ID: 23808646
    [Abstract] [Full Text] [Related]

  • 25. A thorough mechanistic study of ethanol, acetaldehyde, and ethylene adsorption on Cu-MOR via DFT analysis.
    Ma Y, Lang J.
    Phys Chem Chem Phys; 2024 Feb 07; 26(6):4845-4854. PubMed ID: 38170914
    [Abstract] [Full Text] [Related]

  • 26. Molecular insight into the role of zeolite lattice constraints on methane activation over the Cu-O-Cu active site.
    Mahyuddin MH, Saputro AG, Sukanli RPP, Fathurrahman F, Rizkiana J, Nuruddin A, Dipojono HK.
    Phys Chem Chem Phys; 2022 Feb 16; 24(7):4196-4203. PubMed ID: 35119442
    [Abstract] [Full Text] [Related]

  • 27. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane.
    Shiota Y, Yoshizawa K.
    Inorg Chem; 2009 Feb 02; 48(3):838-45. PubMed ID: 19113938
    [Abstract] [Full Text] [Related]

  • 28. Activity of Cu-Al-Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites.
    Lee I, Lee MS, Tao L, Ikuno T, Khare R, Jentys A, Huthwelker T, Borca CN, Kalinko A, Gutiérrez OY, Govind N, Fulton JL, Hu JZ, Glezakou VA, Rousseau R, Sanchez-Sanchez M, Lercher JA.
    JACS Au; 2021 Sep 27; 1(9):1412-1421. PubMed ID: 34604851
    [Abstract] [Full Text] [Related]

  • 29. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
    Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI.
    Proc Natl Acad Sci U S A; 2009 Nov 10; 106(45):18908-13. PubMed ID: 19864626
    [Abstract] [Full Text] [Related]

  • 30. Transition-metal ions in zeolites: coordination and activation of oxygen.
    Smeets PJ, Woertink JS, Sels BF, Solomon EI, Schoonheydt RA.
    Inorg Chem; 2010 Apr 19; 49(8):3573-83. PubMed ID: 20380459
    [Abstract] [Full Text] [Related]

  • 31. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.
    Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI.
    J Am Chem Soc; 2010 Oct 27; 132(42):14736-8. PubMed ID: 20923156
    [Abstract] [Full Text] [Related]

  • 32. Methane Activation by a Mononuclear Copper Active Site in the Zeolite Mordenite: Effect of Metal Nuclearity on Reactivity.
    Heyer AJ, Plessers D, Braun A, Rhoda HM, Bols ML, Hedman B, Hodgson KO, Schoonheydt RA, Sels BF, Solomon EI.
    J Am Chem Soc; 2022 Oct 26; 144(42):19305-19316. PubMed ID: 36219763
    [Abstract] [Full Text] [Related]

  • 33. Possible Peroxo State of the Dicopper Site of Particulate Methane Monooxygenase from Combined Quantum Mechanics and Molecular Mechanics Calculations.
    Itoyama S, Doitomi K, Kamachi T, Shiota Y, Yoshizawa K.
    Inorg Chem; 2016 Mar 21; 55(6):2771-5. PubMed ID: 26918461
    [Abstract] [Full Text] [Related]

  • 34. Complete σ* intramolecular aromatic hydroxylation mechanism through O2 activation by a Schiff base macrocyclic dicopper(I) complex.
    Poater A, Solà M.
    Beilstein J Org Chem; 2013 Mar 21; 9():585-93. PubMed ID: 23616799
    [Abstract] [Full Text] [Related]

  • 35. Role of Amino Acid Residues for Dioxygen Activation in the Second Coordination Sphere of the Dicopper Site of pMMO.
    Miyanishi M, Abe T, Hori Y, Shiota Y, Yoshizawa K.
    Inorg Chem; 2019 Sep 16; 58(18):12280-12288. PubMed ID: 31464432
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective.
    Da Silva JC, Pennifold RC, Harvey JN, Rocha WR.
    Dalton Trans; 2016 Feb 14; 45(6):2492-504. PubMed ID: 26697968
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion.
    Martini A, Signorile M, Negri C, Kvande K, Lomachenko KA, Svelle S, Beato P, Berlier G, Borfecchia E, Bordiga S.
    Phys Chem Chem Phys; 2020 Sep 14; 22(34):18950-18963. PubMed ID: 32578608
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.