These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 30100014

  • 21. Separation performance of the copolymer and homopolymer of aliphatic polycarbonate diols as the stationary phases for capillary gas chromatography.
    Shi Y, Qi M.
    J Chromatogr A; 2021 Jul 19; 1649():462223. PubMed ID: 34038781
    [Abstract] [Full Text] [Related]

  • 22. Calix[4]pyrroles: highly selective stationary phases for gas chromatographic separations.
    Fan J, Wang Z, Li Q, Qi M, Shao S, Fu R.
    J Chromatogr A; 2014 Oct 03; 1362():231-40. PubMed ID: 25173993
    [Abstract] [Full Text] [Related]

  • 23. Amphiphilic triblock copolymer as the gas chromatographic stationary phase with high-resolution performance towards a wide range of isomers and the components of lemon essential oil.
    Duan R, Qi M.
    J Chromatogr A; 2021 Nov 22; 1658():462611. PubMed ID: 34666270
    [Abstract] [Full Text] [Related]

  • 24. Triptycene-based stationary phases for gas chromatographic separations of positional isomers.
    He J, Yu L, Huang X, Qi M.
    J Chromatogr A; 2019 Aug 16; 1599():223-230. PubMed ID: 31000208
    [Abstract] [Full Text] [Related]

  • 25. Synthesis and characteristics of [60]fullerene polysiloxane stationary phase for capillary gas chromatography.
    Fang PF, Zeng ZR, Fan JH, Chen YY.
    J Chromatogr A; 2000 Jan 21; 867(1-2):177-85. PubMed ID: 10670720
    [Abstract] [Full Text] [Related]

  • 26. π-Extended triptycene-based material for capillary gas chromatographic separations.
    Yang Y, Wang Q, Qi M, Huang X.
    Anal Chim Acta; 2017 Oct 02; 988():121-129. PubMed ID: 28916098
    [Abstract] [Full Text] [Related]

  • 27. A chiral metal-organic cage used as the stationary phase for gas chromatography separations.
    Tang B, Zhang X, Geng L, Sun L, Luo A.
    J Chromatogr A; 2021 Jan 11; 1636():461792. PubMed ID: 33340747
    [Abstract] [Full Text] [Related]

  • 28. Cucurbit[n]urils as a new class of stationary phases for gas chromatographic separations.
    Zhang P, Qin S, Qi M, Fu R.
    J Chromatogr A; 2014 Mar 21; 1334():139-48. PubMed ID: 24565233
    [Abstract] [Full Text] [Related]

  • 29. Triptycene-based dicationic guanidinium ionic liquid: A novel stationary phase of high selectivity towards a wide range of positional and structural isomers.
    Yuan Q, Qi M.
    J Chromatogr A; 2020 Jun 21; 1621():461084. PubMed ID: 32303345
    [Abstract] [Full Text] [Related]

  • 30. Separation performance of a new triptycene-based stationary phase with polyethylene glycol units and its application to analysis of the essential oil of Osmanthus fragrans Lour.
    He Y, Qi M.
    J Chromatogr A; 2020 May 10; 1618():460928. PubMed ID: 32008822
    [Abstract] [Full Text] [Related]

  • 31. 7,10-Diphenylfluoranthene grafted polysiloxane as a highly selective stationary phase for gas chromatography.
    Han X, Wang H, He X, Wang B, Wu B.
    J Chromatogr A; 2016 Oct 14; 1468():192-199. PubMed ID: 27692639
    [Abstract] [Full Text] [Related]

  • 32. Chiral hydrogen-bonded organic frameworks used as a chiral stationary phase for chiral separation in gas chromatography.
    Wang W, Zhang Y, Tang B, Hou H, Tang S, Luo A.
    J Chromatogr A; 2022 Jul 19; 1675():463150. PubMed ID: 35660319
    [Abstract] [Full Text] [Related]

  • 33. Adenine-functionalized polypropylene glycol: A novel stationary phase for gas chromatography offering good inertness for acids and bases combined with a unique selectivity.
    Xiong X, Qi M.
    J Chromatogr A; 2020 Feb 08; 1612():460627. PubMed ID: 31668867
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Fabrication of nanoscale graphitic carbon nitride/copper oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of polycyclic aromatic hydrocarbons.
    Yang Y, Qin P, Zhang J, Li W, Zhu J, Lu M, Cai Z.
    J Chromatogr A; 2018 Oct 05; 1570():47-55. PubMed ID: 30078480
    [Abstract] [Full Text] [Related]

  • 38. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase.
    Zhao WW, Zhang CY, Yan ZG, Bai LP, Wang X, Huang H, Zhou YY, Xie Y, Li FS, Li JR.
    J Chromatogr A; 2014 Nov 28; 1370():121-8. PubMed ID: 25454136
    [Abstract] [Full Text] [Related]

  • 39. A promising "metastable" liquid crystal stationary phase for gas chromatography.
    Ammar Khodja F, Sassiat P, Hanafi M, Thiebaut D, Vial J.
    J Chromatogr A; 2020 Apr 12; 1616():460786. PubMed ID: 31882122
    [Abstract] [Full Text] [Related]

  • 40. Features of a truxene-based stationary phase in capillary gas chromatography for separation of some challenging isomers.
    Lv Q, Feng S, Jing L, Zhang Q, Qi M, Wang J, Bai H, Fu R.
    J Chromatogr A; 2016 Jul 08; 1454():114-9. PubMed ID: 27264743
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.