These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 30111282

  • 1. Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis).
    Tai Y, Liu C, Yu S, Yang H, Sun J, Guo C, Huang B, Liu Z, Yuan Y, Xia E, Wei C, Wan X.
    BMC Genomics; 2018 Aug 15; 19(1):616. PubMed ID: 30111282
    [Abstract] [Full Text] [Related]

  • 2. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C, Wan X.
    BMC Plant Biol; 2015 Aug 07; 15():190. PubMed ID: 26245644
    [Abstract] [Full Text] [Related]

  • 3. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).
    Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ.
    BMC Genomics; 2015 Jul 29; 16(1):560. PubMed ID: 26220550
    [Abstract] [Full Text] [Related]

  • 4. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (Camellia sinensis) and Oil Tea (Camellia oleifera) Plants.
    Tai Y, Ling C, Wang H, Yang L, She G, Wang C, Yu S, Chen W, Liu C, Wan X.
    J Agric Food Chem; 2019 Sep 11; 67(36):10235-10244. PubMed ID: 31436988
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model.
    Zhao J, Li P, Xia T, Wan X.
    Crit Rev Biotechnol; 2020 Aug 11; 40(5):667-688. PubMed ID: 32321331
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. De novo full length transcriptome analysis of a naturally caffeine-free tea plant reveals specificity in secondary metabolic regulation.
    Mi X, Yang C, Qiao D, Tang M, Guo Y, Liang S, Li Y, Chen Z, Chen J.
    Sci Rep; 2023 Apr 12; 13(1):6015. PubMed ID: 37045909
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds.
    Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC.
    BMC Genomics; 2011 Feb 28; 12():131. PubMed ID: 21356090
    [Abstract] [Full Text] [Related]

  • 13. Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze).
    Maritim TK, Seth R, Parmar R, Sharma RK.
    Genomics; 2021 Jan 28; 113(1 Pt 1):305-316. PubMed ID: 33321202
    [Abstract] [Full Text] [Related]

  • 14. Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (Camellia Sinensis).
    Cao H, Li J, Ye Y, Lin H, Hao Z, Ye N, Yue C.
    Biomolecules; 2020 Feb 16; 10(2):. PubMed ID: 32079100
    [Abstract] [Full Text] [Related]

  • 15. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis).
    Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J.
    Plant J; 2022 May 16; 110(4):1144-1165. PubMed ID: 35277905
    [Abstract] [Full Text] [Related]

  • 16. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq.
    Wang YN, Tang L, Hou Y, Wang P, Yang H, Wei CL.
    Funct Integr Genomics; 2016 Jul 16; 16(4):383-98. PubMed ID: 27098524
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations.
    Zhu B, Chen LB, Lu M, Zhang J, Han J, Deng WW, Zhang ZZ.
    J Agric Food Chem; 2019 Mar 27; 67(12):3400-3411. PubMed ID: 30830771
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Gene Coexpression Network Reveals Insights into the Origin and Evolution of a Theanine-Associated Regulatory Module in Non-Camellia and Camellia Species.
    Du J, He X, Zhou Y, Zhai C, Yu D, Zhang S, Chen Q, Wan X.
    J Agric Food Chem; 2021 Jan 13; 69(1):615-626. PubMed ID: 33372777
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.