These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 30114581
1. Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating. He J, Wang D, Zhou D. Sci Total Environ; 2019 Jan 15; 648():102-108. PubMed ID: 30114581 [Abstract] [Full Text] [Related]
2. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Wang D, Ge L, He J, Zhang W, Jaisi DP, Zhou D. J Contam Hydrol; 2014 Aug 15; 164():35-48. PubMed ID: 24926609 [Abstract] [Full Text] [Related]
3. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E. Environ Sci Technol; 2013 Aug 15; 47(21):12229-37. PubMed ID: 24106877 [Abstract] [Full Text] [Related]
4. Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Liang Y, Bradford SA, Simunek J, Vereecken H, Klumpp E. Water Res; 2013 May 01; 47(7):2572-82. PubMed ID: 23490100 [Abstract] [Full Text] [Related]
5. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate. Hou J, Zhang M, Wang P, Wang C, Miao L, Xu Y, You G, Lv B, Yang Y, Liu Z. Water Res; 2017 Dec 15; 127():86-95. PubMed ID: 29035769 [Abstract] [Full Text] [Related]
6. Tracking the Transport of Silver Nanoparticles in Soil: a Saturated Column Experiment. Mahdi KNM, Peters R, van der Ploeg M, Ritsema C, Geissen V. Water Air Soil Pollut; 2018 Dec 15; 229(10):334. PubMed ID: 30416217 [Abstract] [Full Text] [Related]
7. Mobility of polivinylpyrrolidone coated silver nanoparticles in tropical soils. Yopasá Arenas A, de Souza Pessôa G, Arruda MAZ, Fostier AH. Chemosphere; 2018 Mar 15; 194():543-552. PubMed ID: 29241128 [Abstract] [Full Text] [Related]
8. Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam. Braun A, Klumpp E, Azzam R, Neukum C. Sci Total Environ; 2015 Dec 01; 535():102-12. PubMed ID: 25527873 [Abstract] [Full Text] [Related]
9. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties. Rahmatpour S, Shirvani M, Mosaddeghi MR, Bazarganipour M. J Environ Manage; 2017 May 15; 193():136-145. PubMed ID: 28213297 [Abstract] [Full Text] [Related]
10. Transport of silver nanoparticles (AgNPs) in soil. Sagee O, Dror I, Berkowitz B. Chemosphere; 2012 Jul 15; 88(5):670-5. PubMed ID: 22516207 [Abstract] [Full Text] [Related]
11. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport. Liang Y, Luo Y, Lu Z, Klumpp E, Shen C, Bradford SA. Environ Pollut; 2021 May 01; 276():116661. PubMed ID: 33592438 [Abstract] [Full Text] [Related]
12. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte. Hou J, Zhang M, Wang P, Wang C, Miao L, Xu Y, You G, Lv B, Yang Y, Liu Z. Environ Pollut; 2017 Oct 01; 229():49-59. PubMed ID: 28577382 [Abstract] [Full Text] [Related]
13. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Mitzel MR, Tufenkji N. Environ Sci Technol; 2014 Oct 01; 48(5):2715-23. PubMed ID: 24552618 [Abstract] [Full Text] [Related]
14. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media. Park CM, Heo J, Her N, Chu KH, Jang M, Yoon Y. Water Res; 2016 Oct 15; 103():38-47. PubMed ID: 27429353 [Abstract] [Full Text] [Related]
15. Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. Torrent L, Marguí E, Queralt I, Hidalgo M, Iglesias M. J Environ Sci (China); 2019 Sep 15; 83():205-216. PubMed ID: 31221383 [Abstract] [Full Text] [Related]
16. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter. Adrian YF, Schneidewind U, Bradford SA, Šimůnek J, Klumpp E, Azzam R. Environ Pollut; 2019 Dec 15; 255(Pt 1):113124. PubMed ID: 31622956 [Abstract] [Full Text] [Related]
18. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material. Adrian YF, Schneidewind U, Bradford SA, Simunek J, Fernandez-Steeger TM, Azzam R. Environ Pollut; 2018 May 15; 236():195-207. PubMed ID: 29414340 [Abstract] [Full Text] [Related]
19. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Ellis LA, Valsami-Jones E, Lead JR, Baalousha M. Sci Total Environ; 2016 Oct 15; 568():95-106. PubMed ID: 27289392 [Abstract] [Full Text] [Related]
20. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons. Wang K, Zhang Y, Sun B, Yang Y, Xiao B, Zhu L. Chemosphere; 2021 Nov 15; 283():131159. PubMed ID: 34144287 [Abstract] [Full Text] [Related] Page: [Next] [New Search]