These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 30114667
1. Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide. Wang Y, Chen X, Zhou H. Bioresour Technol; 2018 Nov; 268():480-487. PubMed ID: 30114667 [Abstract] [Full Text] [Related]
2. Responses of microbial community to pH stress in bioleaching of low grade copper sulfide. Wang Y, Li K, Chen X, Zhou H. Bioresour Technol; 2018 Feb; 249():146-153. PubMed ID: 29040848 [Abstract] [Full Text] [Related]
3. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K, Auvinen H, Johnson DB. Biotechnol Bioeng; 2008 Nov 01; 101(4):739-50. PubMed ID: 18496880 [Abstract] [Full Text] [Related]
4. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide. Li XT, Huang ZS, Huang Y, Jiang Z, Liang ZL, Yin HQ, Zhang GJ, Jia Y, Deng Y, Liu SJ, Jiang CY. Sci Total Environ; 2023 Apr 15; 869():161752. PubMed ID: 36690115 [Abstract] [Full Text] [Related]
5. Comparison of bioleaching of a sulfidic copper ore (chalcopyrite) in column percolators and in stirred-tank bioreactors including microbial community analysis. Bakhti A, Moghimi H, Bozorg A, Stankovic S, Manafi Z, Schippers A. Chemosphere; 2024 Feb 15; 349():140945. PubMed ID: 38104736 [Abstract] [Full Text] [Related]
6. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Xiao Y, Liu X, Dong W, Liang Y, Niu J, Gu Y, Ma L, Hao X, Zhang X, Xu Z, Yin H. Arch Microbiol; 2017 Jul 15; 199(5):757-766. PubMed ID: 28260145 [Abstract] [Full Text] [Related]
7. Comparison of microbial diversity during column bioleaching of chalcopyrite at different temperatures. Chen B, Wu B, Liu X, Wen J. J Basic Microbiol; 2014 Jun 15; 54(6):491-9. PubMed ID: 23832814 [Abstract] [Full Text] [Related]
8. Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles. Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G. Bioresour Technol; 2014 Feb 15; 153():300-6. PubMed ID: 24374030 [Abstract] [Full Text] [Related]
9. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. Zhang X, Niu J, Liang Y, Liu X, Yin H. BMC Genet; 2016 Jan 19; 17():21. PubMed ID: 26781463 [Abstract] [Full Text] [Related]
10. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource. Feng S, Yin Y, Yin Z, Zhang H, Zhu D, Tong Y, Yang H. Environ Res; 2021 Mar 19; 194():110702. PubMed ID: 33400950 [Abstract] [Full Text] [Related]
11. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Wang X, Ma L, Wu J, Xiao Y, Tao J, Liu X. Bioresour Technol; 2020 Jul 19; 308():123273. PubMed ID: 32247948 [Abstract] [Full Text] [Related]
12. Bioleaching of copper sulfide minerals assisted by microbial fuel cells. Huang T, Wei X, Zhang S. Bioresour Technol; 2019 Sep 19; 288():121561. PubMed ID: 31152952 [Abstract] [Full Text] [Related]
19. Effect of diurnal temperature range on bioleaching of sulfide ore by an artificial microbial consortium. Fang X, Sun S, Liao X, Li S, Zhou S, Gan Q, Zeng L, Guan Z. Sci Total Environ; 2022 Feb 01; 806(Pt 1):150234. PubMed ID: 34562759 [Abstract] [Full Text] [Related]