These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 30119611

  • 1. Modulating Intracellular Ice Growth with Cell-Permeating Small-Molecule Ice Recrystallization Inhibitors.
    Poisson JS, Acker JP, Briard JG, Meyer JE, Ben RN.
    Langmuir; 2019 Jun 11; 35(23):7452-7458. PubMed ID: 30119611
    [Abstract] [Full Text] [Related]

  • 2. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing.
    Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN.
    Sci Rep; 2016 Mar 29; 6():23619. PubMed ID: 27021850
    [Abstract] [Full Text] [Related]

  • 3. Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives.
    William N, Acker JP.
    Cryobiology; 2020 Dec 29; 97():123-130. PubMed ID: 33007287
    [Abstract] [Full Text] [Related]

  • 4. O-Aryl-Glycoside Ice Recrystallization Inhibitors as Novel Cryoprotectants: A Structure-Function Study.
    Capicciotti CJ, Mancini RS, Turner TR, Koyama T, Alteen MG, Doshi M, Inada T, Acker JP, Ben RN.
    ACS Omega; 2016 Oct 31; 1(4):656-662. PubMed ID: 30023486
    [Abstract] [Full Text] [Related]

  • 5. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations.
    Capicciotti CJ, Kurach JD, Turner TR, Mancini RS, Acker JP, Ben RN.
    Sci Rep; 2015 Apr 08; 5():9692. PubMed ID: 25851700
    [Abstract] [Full Text] [Related]

  • 6. Control of ice recrystallization in liver tissues using small molecule carbohydrate derivatives.
    William N, Acker JP.
    Cryobiology; 2020 Dec 08; 97():250-253. PubMed ID: 32986987
    [Abstract] [Full Text] [Related]

  • 7. Electrosterically stabilized cellulose nanocrystals demonstrate ice recrystallization inhibition and cryoprotection activities.
    Li T, Li M, Dia VP, Lenaghan S, Zhong Q, Wu T.
    Int J Biol Macromol; 2020 Dec 15; 165(Pt B):2378-2386. PubMed ID: 33132127
    [Abstract] [Full Text] [Related]

  • 8. Small-Molecule Ice Recrystallization Inhibitors Improve the Post-Thaw Function of Hematopoietic Stem and Progenitor Cells.
    Briard JG, Jahan S, Chandran P, Allan D, Pineault N, Ben RN.
    ACS Omega; 2016 Nov 30; 1(5):1010-1018. PubMed ID: 30023498
    [Abstract] [Full Text] [Related]

  • 9. Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment.
    Jahan S, Adam MK, Manesia JK, Doxtator E, Ben RN, Pineault N.
    Transfusion; 2020 Apr 30; 60(4):769-778. PubMed ID: 32187691
    [Abstract] [Full Text] [Related]

  • 10. The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low cost technique for ex vivo subnormothermic lung perfusion.
    Lautner L, Himmat S, Acker JP, Nagendran J.
    Cryobiology; 2020 Dec 30; 97():93-100. PubMed ID: 33031822
    [Abstract] [Full Text] [Related]

  • 11. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X, Zhao G, Shu Z, Niu D, Zhang Z, Zhou P, Cao Y, Gao D.
    Biopreserv Biobank; 2016 Dec 30; 14(6):511-519. PubMed ID: 27532801
    [Abstract] [Full Text] [Related]

  • 12. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV, Swanlund DJ, Roberts KP, Bischof JC.
    Biol Reprod; 1999 Sep 30; 61(3):764-75. PubMed ID: 10456855
    [Abstract] [Full Text] [Related]

  • 13. Transmembrane Water Transport and Intracellular Ice Formation of Human Umbilical Vein Endothelial Cells During Freezing.
    Huang Y, Dong Y, Gao B, Ma R, Gao FL, Shen L.
    Biopreserv Biobank; 2022 Aug 30; 20(4):311-316. PubMed ID: 35984940
    [Abstract] [Full Text] [Related]

  • 14. Investigating membrane and mitochondrial cryobiological responses of HUVEC using interrupted cooling protocols.
    Reardon AJ, Elliott JA, McGann LE.
    Cryobiology; 2015 Oct 30; 71(2):306-17. PubMed ID: 26254036
    [Abstract] [Full Text] [Related]

  • 15. Natural cryoprotectants combinations of l-proline and trehalose for red blood cells cryopreservation.
    Dou M, Lu C, Sun Z, Rao W.
    Cryobiology; 2019 Dec 30; 91():23-29. PubMed ID: 31693877
    [Abstract] [Full Text] [Related]

  • 16. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.
    Chaytor JL, Tokarew JM, Wu LK, Leclère M, Tam RY, Capicciotti CJ, Guolla L, von Moos E, Findlay CS, Allan DS, Ben RN.
    Glycobiology; 2012 Jan 30; 22(1):123-33. PubMed ID: 21852258
    [Abstract] [Full Text] [Related]

  • 17. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization.
    Huebinger J, Han HM, Hofnagel O, Vetter IR, Bastiaens PI, Grabenbauer M.
    Biophys J; 2016 Feb 23; 110(4):840-9. PubMed ID: 26541066
    [Abstract] [Full Text] [Related]

  • 18. Intracellular ice formation and growth in MCF-7 cancer cells.
    Yang G, Zhang A, Xu LX.
    Cryobiology; 2011 Aug 23; 63(1):38-45. PubMed ID: 21536022
    [Abstract] [Full Text] [Related]

  • 19. Use of Ice Recrystallization Inhibition Assays to Screen for Compounds That Inhibit Ice Recrystallization.
    Ampaw AA, Sibthorpe A, Ben RN.
    Methods Mol Biol; 2021 Aug 23; 2180():271-283. PubMed ID: 32797415
    [Abstract] [Full Text] [Related]

  • 20. Effect of supercooling and cell volume on intracellular ice formation.
    Prickett RC, Marquez-Curtis LA, Elliott JA, McGann LE.
    Cryobiology; 2015 Apr 23; 70(2):156-63. PubMed ID: 25707695
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.