These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 30123985

  • 21. Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1.
    Lawry SM, Tebbets B, Kean I, Stewart D, Hetelle J, Klein BS.
    Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27872062
    [Abstract] [Full Text] [Related]

  • 22. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans.
    Kojima K, Bahn YS, Heitman J.
    Microbiology (Reading); 2006 Mar; 152(Pt 3):591-604. PubMed ID: 16514140
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity.
    Brandhorst TT, Kean IRL, Lawry SM, Wiesner DL, Klein BS.
    Sci Rep; 2019 Mar 25; 9(1):5047. PubMed ID: 30911085
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans.
    Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I.
    Biosci Biotechnol Biochem; 2002 Oct 25; 66(10):2209-15. PubMed ID: 12450134
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity.
    Motoyama T, Ochiai N, Morita M, Iida Y, Usami R, Kudo T.
    Curr Genet; 2008 Oct 25; 54(4):185-95. PubMed ID: 18726099
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress.
    Hagiwara D, Asano Y, Marui J, Yoshimi A, Mizuno T, Abe K.
    Fungal Genet Biol; 2009 Nov 25; 46(11):868-78. PubMed ID: 19596074
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple.
    Li HX, Xiao CL.
    Phytopathology; 2008 Apr 25; 98(4):427-35. PubMed ID: 18944191
    [Abstract] [Full Text] [Related]

  • 38. The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus.
    McCormick A, Jacobsen ID, Broniszewska M, Beck J, Heesemann J, Ebel F.
    PLoS One; 2012 Apr 25; 7(6):e38262. PubMed ID: 22675534
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum.
    Kanetis L, Förster H, Jones CA, Borkovich KA, Adaskaveg JE.
    Phytopathology; 2008 Feb 25; 98(2):205-14. PubMed ID: 18943197
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.