These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


321 related items for PubMed ID: 30130168

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X, Zhao B, Wang Y, Xu S, Gao X.
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [Abstract] [Full Text] [Related]

  • 3. Electroencephalography-based endogenous brain-computer interface for online communication with a completely locked-in patient.
    Han CH, Kim YW, Kim DY, Kim SH, Nenadic Z, Im CH.
    J Neuroeng Rehabil; 2019 Jan 30; 16(1):18. PubMed ID: 30700310
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System.
    Gao Q, Dou L, Belkacem AN, Chen C.
    Biomed Res Int; 2017 Jan 30; 2017():8316485. PubMed ID: 28660211
    [Abstract] [Full Text] [Related]

  • 8. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A, Raza H, Meena YK, Dutta A, Prasad G.
    J Neurosci Methods; 2019 Jan 15; 312():1-11. PubMed ID: 30452976
    [Abstract] [Full Text] [Related]

  • 9. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm.
    Chen X, Zhao B, Wang Y, Gao X.
    J Neural Eng; 2019 Apr 15; 16(2):026012. PubMed ID: 30523962
    [Abstract] [Full Text] [Related]

  • 10. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J, Zhou Z, Yin E, Yu Y, Liu Y, Hu D.
    Comput Biol Med; 2015 Nov 01; 66():11-9. PubMed ID: 26340647
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH, Hwang HJ, Han CH, Jung KY, Im CH.
    J Neural Eng; 2013 Apr 01; 10(2):026021. PubMed ID: 23528484
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of induced and evoked changes in EEG during selective attention to verbal stimuli.
    Horki P, Bauernfeind G, Schippinger W, Pichler G, Müller-Putz GR.
    J Neurosci Methods; 2016 Sep 01; 270():165-176. PubMed ID: 27329006
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A novel virtual robotic platform for controlling six degrees of freedom assistive devices with body-machine interfaces.
    Augenstein TE, Nagalla D, Mohacey A, Cubillos LH, Lee MH, Ranganathan R, Krishnan C.
    Comput Biol Med; 2024 Aug 01; 178():108778. PubMed ID: 38925086
    [Abstract] [Full Text] [Related]

  • 20. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
    Quiles E, Dadone J, Chio N, García E.
    Sensors (Basel); 2022 Jul 02; 22(13):. PubMed ID: 35808498
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.