These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 3013115
1. Gluconate accumulation and enzyme activities with extremely nitrogen-limited surface cultures of Aspergillus niger. Müller HM. Arch Microbiol; 1986 Mar; 144(2):151-7. PubMed ID: 3013115 [Abstract] [Full Text] [Related]
4. Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores. Otani M, Ihara N, Umezawa C, Sano K. J Bacteriol; 1986 Jul; 167(1):148-52. PubMed ID: 3013833 [Abstract] [Full Text] [Related]
8. Effect of ammonium and nitrate ratio on glucose oxidase activity during gluconic acid fermentation by a mutant strain of Aspergillus niger. Ray S, Banik AK. Indian J Exp Biol; 1999 Apr; 37(4):391-5. PubMed ID: 10641175 [Abstract] [Full Text] [Related]
9. Sugar catabolism in Aquaspirillum gracile. Laughon BE, Krieg NR. J Bacteriol; 1974 Sep; 119(3):691-7. PubMed ID: 4369249 [Abstract] [Full Text] [Related]
10. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast. Corkins ME, Wilson S, Cocuron JC, Alonso AP, Bird AJ. J Biol Chem; 2017 Aug 18; 292(33):13823-13832. PubMed ID: 28667014 [Abstract] [Full Text] [Related]
12. Gluconate catabolism in Rhizobium japonicum. Keele BB, Hamilton PB, Elkan GH. J Bacteriol; 1970 Mar 18; 101(3):698-704. PubMed ID: 5438044 [Abstract] [Full Text] [Related]
13. Studies on gluconate metabolism in Aspergillus niger. II. Comparative studies on the enzyme make-up of the adapted and parent strains of Aspergillus niger. Lakshminarayana K, Modi VV, Shah VK. Arch Mikrobiol; 1969 Mar 18; 66(4):396-405. PubMed ID: 5384636 [No Abstract] [Full Text] [Related]
14. Gluconate metabolism in germinated spores of Bacillus megaterium QM B1551: primary roles of gluconokinase and the pentose cycle. Otani M, Fujita T, Umezawa C, Sano K. Biochim Biophys Acta; 1987 Jun 22; 924(3):467-72. PubMed ID: 3036241 [Abstract] [Full Text] [Related]
15. Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa. Hunt JC, Phibbs PV. J Bacteriol; 1983 May 22; 154(2):793-802. PubMed ID: 6404887 [Abstract] [Full Text] [Related]
16. Enzymatic analysis of the pathways of glucose catabolism and gluconeogenesis in Pseudomonas citronellolis. O'Brien RW. Arch Microbiol; 1975 Mar 12; 103(1):71-6. PubMed ID: 239656 [Abstract] [Full Text] [Related]
17. Effect of temperature on the activity and synthesis of glucose-catabolizing enzymes in Pseudomonas fluorescens. Lynch WH, MacLeod J, Franklin M. Can J Microbiol; 1975 Oct 12; 21(10):1560-72. PubMed ID: 172202 [Abstract] [Full Text] [Related]
18. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Rauch B, Pahlke J, Schweiger P, Deppenmeier U. Appl Microbiol Biotechnol; 2010 Oct 12; 88(3):711-8. PubMed ID: 20676631 [Abstract] [Full Text] [Related]
19. The specificity of oxidase and kinase preparations from Pseudomonas fluorescens towards deoxyfluoromonosaccharides. Taylor NF, Hill L, Eisenthal R. Can J Biochem; 1975 Jan 12; 53(1):57-64. PubMed ID: 164267 [Abstract] [Full Text] [Related]
20. Phenotypic suppression of a fructose-1,6-diphosphate aldolase mutation in Escherichia coli. Schreyer R, Böck A. J Bacteriol; 1973 Jul 12; 115(1):268-76. PubMed ID: 4577744 [Abstract] [Full Text] [Related] Page: [Next] [New Search]