These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 3013302
41. A GTPase-accelerating factor for transducin, distinct from its effector cGMP phosphodiesterase, in rod outer segment membranes. Angleson JK, Wensel TG. Neuron; 1993 Nov; 11(5):939-49. PubMed ID: 8240815 [Abstract] [Full Text] [Related]
42. Enzyme regulation and GTP binding protein: an algorithm of control that includes physical displacement of an inhibitory protein. Yamazaki A, Uchida S, Stein PJ, Wheeler GL, Bitensky MW. Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984 Nov; 16():381-92. PubMed ID: 6144254 [No Abstract] [Full Text] [Related]
43. [Effect of nucleoside triphosphates on cyclic nucleotide phosphodiesterase: role of protein modulators]. Garnovskaia MN, Dumler IL, Etingof RN. Biokhimiia; 1982 Feb; 47(2):221-5. PubMed ID: 6279182 [Abstract] [Full Text] [Related]
44. Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948. Gillespie PG, Beavo JA. Mol Pharmacol; 1989 Nov; 36(5):773-81. PubMed ID: 2555675 [Abstract] [Full Text] [Related]
45. Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system. Sitaramayya A. Biochemistry; 1986 Sep 23; 25(19):5460-8. PubMed ID: 3022791 [Abstract] [Full Text] [Related]
46. Transient response of retinal rod outer segment phosphodiesterase to actinic light pulses. I. Simple quantitative kinetic model. Schmidt JA, Yguerabide J. J Biol Chem; 1989 Nov 25; 264(33):19790-803. PubMed ID: 2555331 [Abstract] [Full Text] [Related]
47. The light-activated GTP-dependent cyclic GMP phosphodiesterase complex of bovine retinal rod outer segments. Reconstitution from catalytic and regulatory proteins in the presence of membranes depleted of soluble proteins. Kohnken RE, Eadie DM, McConnell DG. J Biol Chem; 1981 Dec 10; 256(23):12510-6. PubMed ID: 6117559 [No Abstract] [Full Text] [Related]
48. Kinetic studies suggest that light-activated cyclic GMP phosphodiesterase is a complex with G-protein subunits. Sitaramayya A, Harkness J, Parkes JH, Gonzalez-Oliva C, Liebman PA. Biochemistry; 1986 Feb 11; 25(3):651-6. PubMed ID: 3006765 [Abstract] [Full Text] [Related]
49. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment. Gupta BD. Indian J Biochem Biophys; 1989 Oct 11; 26(5):305-10. PubMed ID: 2560768 [Abstract] [Full Text] [Related]
50. Isolation and recombination of bovine rod outer segment cGMP phosphodiesterase and its regulators. Hurley JB. Biochem Biophys Res Commun; 1980 Jan 29; 92(2):505-10. PubMed ID: 6101951 [No Abstract] [Full Text] [Related]
51. Acceleration of key reactions as a strategy to elucidate the rate-limiting chemistry underlying phototransduction inactivation. Kennedy MJ, Sowa ME, Wensel TG, Hurley JB. Invest Ophthalmol Vis Sci; 2003 Mar 29; 44(3):1016-22. PubMed ID: 12601023 [Abstract] [Full Text] [Related]
52. Rhodopsin phosphorylation and retinal outer segment cyclic nucleotide phosphodiesterase: lack of a causal relationship. Frank RN, Buzney SM. Exp Eye Res; 1977 Nov 29; 25(5):495-504. PubMed ID: 202473 [No Abstract] [Full Text] [Related]
53. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Kwok-Keung Fung B, Stryer L. Proc Natl Acad Sci U S A; 1980 May 29; 77(5):2500-4. PubMed ID: 6930647 [Abstract] [Full Text] [Related]
54. Gain, speed and sensitivity of GTP binding vs PDE activation in visual excitation. Liebman PA, Pugh EN. Vision Res; 1982 May 29; 22(12):1475-80. PubMed ID: 6305023 [Abstract] [Full Text] [Related]
55. A monoclonal antibody to guanine nucleotide binding protein inhibits the light-activated cyclic GMP pathway in frog rod outer segments. Hamm HE, Bownds MD. J Gen Physiol; 1984 Aug 29; 84(2):265-80. PubMed ID: 6092516 [Abstract] [Full Text] [Related]
56. A functional link between the dark Mg-ATPase activity and the light-induced enzymatic cascade in rod outer segments. Bennett N. Eur J Biochem; 1986 Jun 16; 157(3):487-95. PubMed ID: 3013632 [Abstract] [Full Text] [Related]
57. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its gamma subunit and transducin. Wensel TG, Stryer L. Proteins; 1986 Sep 16; 1(1):90-9. PubMed ID: 2835761 [Abstract] [Full Text] [Related]
58. Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. Miller JL, Fox DA, Litman BJ. Biochemistry; 1986 Sep 09; 25(18):4983-8. PubMed ID: 3021208 [Abstract] [Full Text] [Related]
59. Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina. He L, Campbell ML, Srivastava D, Blocker YS, Harris JR, Swaroop A, Fox DA. Mol Vis; 1998 Dec 31; 4():32. PubMed ID: 9873070 [Abstract] [Full Text] [Related]
60. Light-dependent interactions between rhodopsin and photoreceptor enzymes. Kühn H, Chabre M. Biophys Struct Mech; 1983 Dec 31; 9(4):231-4. PubMed ID: 6303465 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]