These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 30133297

  • 1. Enhancement of Coalescence-Induced Nanodroplet Jumping on Superhydrophobic Surfaces.
    Xie FF, Lu G, Wang XD, Wang DQ.
    Langmuir; 2018 Sep 18; 34(37):11195-11203. PubMed ID: 30133297
    [Abstract] [Full Text] [Related]

  • 2. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets.
    Xie FF, Lu G, Wang XD, Wang BB.
    Langmuir; 2018 Feb 27; 34(8):2734-2740. PubMed ID: 29384379
    [Abstract] [Full Text] [Related]

  • 3. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D, Zhao M, Zhang H, Yang Y, Zheng Y.
    Langmuir; 2020 May 19; 36(19):5444-5453. PubMed ID: 32311257
    [Abstract] [Full Text] [Related]

  • 4. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove.
    Liu C, Zhao M, Zheng Y, Lu D, Song L.
    ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):32542-32554. PubMed ID: 34180653
    [Abstract] [Full Text] [Related]

  • 5. Enhancement and Predictable Guidance of Coalescence-Induced Droplet Jumping on V-Shaped Superhydrophobic Surfaces with a Ridge.
    Tang S, Li Q, Li W, Chen S.
    Langmuir; 2024 Aug 12. PubMed ID: 39133052
    [Abstract] [Full Text] [Related]

  • 6. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.
    Chen X, Patel RS, Weibel JA, Garimella SV.
    Sci Rep; 2016 Jan 04; 6():18649. PubMed ID: 26725512
    [Abstract] [Full Text] [Related]

  • 7. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect.
    Wang K, Liang Q, Jiang R, Zheng Y, Lan Z, Ma X.
    Langmuir; 2017 Jun 27; 33(25):6258-6268. PubMed ID: 28562053
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P, Maeda Y, Lv F, Takata Y, Orejon D.
    ACS Appl Mater Interfaces; 2017 Oct 11; 9(40):35391-35403. PubMed ID: 28925681
    [Abstract] [Full Text] [Related]

  • 10. Enhanced Jumping-Droplet Departure.
    Kim MK, Cha H, Birbarah P, Chavan S, Zhong C, Xu Y, Miljkovic N.
    Langmuir; 2015 Dec 15; 31(49):13452-66. PubMed ID: 26571384
    [Abstract] [Full Text] [Related]

  • 11. Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces.
    Vahabi H, Wang W, Davies S, Mabry JM, Kota AK.
    ACS Appl Mater Interfaces; 2017 Aug 30; 9(34):29328-29336. PubMed ID: 28771317
    [Abstract] [Full Text] [Related]

  • 12. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q, Yan X, Li J, Li L, Cha H, Ding Y, Dang C, Jia L, Miljkovic N.
    Langmuir; 2020 Aug 18; 36(32):9510-9522. PubMed ID: 32689802
    [Abstract] [Full Text] [Related]

  • 13. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces.
    Yin C, Wang T, Che Z, Jia M, Sun K.
    Langmuir; 2019 Dec 10; 35(49):16201-16209. PubMed ID: 31738548
    [Abstract] [Full Text] [Related]

  • 14. How coalescing droplets jump.
    Enright R, Miljkovic N, Sprittles J, Nolan K, Mitchell R, Wang EN.
    ACS Nano; 2014 Oct 28; 8(10):10352-62. PubMed ID: 25171210
    [Abstract] [Full Text] [Related]

  • 15. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X, Weibel JA, Garimella SV.
    ACS Omega; 2017 Jun 30; 2(6):2883-2890. PubMed ID: 31457623
    [Abstract] [Full Text] [Related]

  • 16. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X, Wang P, Zhang D.
    ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):38276-38284. PubMed ID: 31529958
    [Abstract] [Full Text] [Related]

  • 17. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.
    Cha H, Chun JM, Sotelo J, Miljkovic N.
    ACS Nano; 2016 Sep 27; 10(9):8223-32. PubMed ID: 27447844
    [Abstract] [Full Text] [Related]

  • 18. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures.
    Liu C, Zhao M, Lu D, Sun Y, Song L, Zheng Y.
    Langmuir; 2022 Jun 07; 38(22):6923-6933. PubMed ID: 35451848
    [Abstract] [Full Text] [Related]

  • 19. Coalescence-Induced Droplet Jumping.
    Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH.
    Langmuir; 2021 Jan 26; 37(3):983-1000. PubMed ID: 33443436
    [Abstract] [Full Text] [Related]

  • 20. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics.
    Li H, Yang W, Aili A, Zhang T.
    Langmuir; 2017 Aug 29; 33(34):8574-8581. PubMed ID: 28767250
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.