These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
284 related items for PubMed ID: 30141081
1. Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast. Kato S, Yamauchi Y, Izawa S. Appl Microbiol Biotechnol; 2018 Nov; 102(22):9669-9677. PubMed ID: 30141081 [Abstract] [Full Text] [Related]
2. Prioritized Expression of BTN2 of Saccharomyces cerevisiae under Pronounced Translation Repression Induced by Severe Ethanol Stress. Yamauchi Y, Izawa S. Front Microbiol; 2016 Nov; 7():1319. PubMed ID: 27602028 [Abstract] [Full Text] [Related]
3. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A. FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307 [Abstract] [Full Text] [Related]
4. Btn2 is involved in the clearance of denatured proteins caused by severe ethanol stress in Saccharomyces cerevisiae. Kato S, Yoshida M, Izawa S. FEMS Yeast Res; 2019 Dec 01; 19(8):. PubMed ID: 31711140 [Abstract] [Full Text] [Related]
5. Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Yoshida M, Furutani N, Imai F, Miki T, Izawa S. Microbiol Spectr; 2022 Oct 26; 10(5):e0090122. PubMed ID: 36040149 [Abstract] [Full Text] [Related]
6. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. Watanabe D, Kaneko A, Sugimoto Y, Ohnuki S, Takagi H, Ohya Y. J Biosci Bioeng; 2017 Feb 26; 123(2):183-189. PubMed ID: 27633130 [Abstract] [Full Text] [Related]
7. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice. Ramirez-Córdova J, Drnevich J, Madrigal-Pulido JA, Arrizon J, Allen K, Martínez-Velázquez M, Alvarez-Maya I. Antonie Van Leeuwenhoek; 2012 Aug 26; 102(2):247-55. PubMed ID: 22535436 [Abstract] [Full Text] [Related]
8. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions. Picazo C, McDonagh B, Peinado J, Bárcena JA, Matallana E, Aranda A. Appl Environ Microbiol; 2019 Apr 01; 85(7):. PubMed ID: 30683739 [Abstract] [Full Text] [Related]
9. Isolation of lactic acid-tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage. Kubo R, Ohta K, Funakawa S, Kitabatake N, Araki S, Izawa S. J Biosci Bioeng; 2014 Dec 01; 118(6):657-60. PubMed ID: 24910259 [Abstract] [Full Text] [Related]
10. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. Li R, Xiong G, Yuan S, Wu Z, Miao Y, Weng P. World J Microbiol Biotechnol; 2017 Nov 03; 33(11):206. PubMed ID: 29101531 [Abstract] [Full Text] [Related]
11. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural. Ishida Y, Nguyen TTM, Izawa S. J Biotechnol; 2017 Jun 20; 252():65-72. PubMed ID: 28458045 [Abstract] [Full Text] [Related]
12. Nutrient Signaling via the TORC1-Greatwall-PP2AB55δ Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Watanabe D, Kajihara T, Sugimoto Y, Takagi K, Mizuno M, Zhou Y, Chen J, Takeda K, Tatebe H, Shiozaki K, Nakazawa N, Izawa S, Akao T, Shimoi H, Maeda T, Takagi H. Appl Environ Microbiol; 2019 Jan 01; 85(1):. PubMed ID: 30341081 [Abstract] [Full Text] [Related]
13. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Izawa S, Ikeda K, Miki T, Wakai Y, Inoue Y. Appl Microbiol Biotechnol; 2010 Sep 01; 88(1):277-82. PubMed ID: 20625715 [Abstract] [Full Text] [Related]
14. Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake. Izawa S, Takemura R, Ikeda K, Fukuda K, Wakai Y, Inoue Y. Appl Microbiol Biotechnol; 2005 Nov 01; 69(1):86-91. PubMed ID: 15803312 [Abstract] [Full Text] [Related]
15. Adaptability of wine yeast to ethanol-induced protein denaturation. Furutani N, Izawa S. FEMS Yeast Res; 2022 Nov 25; 22(1):. PubMed ID: 36385376 [Abstract] [Full Text] [Related]
16. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Penacho V, Blondin B, Valero E, Gonzalez R. Biotechnol Prog; 2012 Nov 25; 28(2):327-36. PubMed ID: 22065482 [Abstract] [Full Text] [Related]
17. Production technologies for reduced alcoholic wines. Schmidtke LM, Blackman JW, Agboola SO. J Food Sci; 2012 Jan 25; 77(1):R25-41. PubMed ID: 22260123 [Abstract] [Full Text] [Related]
18. Yeast strain affects phenolic concentration in Pinot noir wines made by microwave maceration with early pressing. Carew AL, Close DC, Dambergs RG. J Appl Microbiol; 2015 Jun 25; 118(6):1385-94. PubMed ID: 25728037 [Abstract] [Full Text] [Related]
19. Fermentative conditions modulating sweetness in dry wines: genetics and environmental factors influencing the expression level of the Saccharomyces cerevisiae HSP12 gene. Marchal A, Marullo P, Durand C, Moine V, Dubourdieu D. J Agric Food Chem; 2015 Jan 14; 63(1):304-11. PubMed ID: 25524156 [Abstract] [Full Text] [Related]
20. Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. Eliodório KP, Cunha GCGE, Müller C, Lucaroni AC, Giudici R, Walker GM, Alves SL, Basso TO. Adv Appl Microbiol; 2019 Jan 14; 109():61-119. PubMed ID: 31677647 [Abstract] [Full Text] [Related] Page: [Next] [New Search]