These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 30142529
1. Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Wang Y, Cui W, Chou J, Wen S, Sun Y, Zhang H. Colloids Surf B Biointerfaces; 2018 Dec 01; 172():90-97. PubMed ID: 30142529 [Abstract] [Full Text] [Related]
2. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Gao X, Zhang X, Song J, Xu X, Xu A, Wang M, Xie B, Huang E, Deng F, Wei S. Int J Nanomedicine; 2015 Dec 01; 10():7109-28. PubMed ID: 26604759 [Abstract] [Full Text] [Related]
3. Effect of inorganic and organic bioactive signals decoration on the biological performance of chitosan scaffolds for bone tissue engineering. Soriente A, Fasolino I, Raucci MG, Demitri C, Madaghiele M, Giuri A, Sannino A, Ambrosio L. J Mater Sci Mater Med; 2018 May 07; 29(5):62. PubMed ID: 29736686 [Abstract] [Full Text] [Related]
4. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q, Cosme JG, Xu T, Miszuk JM, Picciani PH, Fong H, Sun H. Biomaterials; 2017 Jan 07; 115():115-127. PubMed ID: 27886552 [Abstract] [Full Text] [Related]
5. Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects. Zhang Y, Yin C, Cheng Y, Huang X, Liu K, Cheng G, Li Z. Adv Wound Care (New Rochelle); 2020 Aug 07; 9(8):441-452. PubMed ID: 32857019 [Abstract] [Full Text] [Related]
6. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Lin Y, Zhang L, Liu NQ, Yao Q, Van Handel B, Xu Y, Wang C, Evseenko D, Wang L. Int J Nanomedicine; 2019 Aug 07; 14():5831-5848. PubMed ID: 31534327 [Abstract] [Full Text] [Related]
7. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S. ACS Appl Mater Interfaces; 2016 Feb 10; 8(5):3499-515. PubMed ID: 26756224 [Abstract] [Full Text] [Related]
8. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Cheng G, Ma X, Li J, Cheng Y, Cao Y, Wang Z, Shi X, Du Y, Deng H, Li Z. Int J Pharm; 2018 Aug 25; 547(1-2):656-666. PubMed ID: 29886100 [Abstract] [Full Text] [Related]
9. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Jayakumar R, Nair SV. Tissue Eng Part A; 2010 Feb 25; 16(2):393-404. PubMed ID: 19772455 [Abstract] [Full Text] [Related]
10. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T. Life Sci; 2016 Mar 01; 148():139-44. PubMed ID: 26874032 [Abstract] [Full Text] [Related]
11. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. J Biomater Appl; 2015 May 01; 29(10):1394-406. PubMed ID: 25592285 [Abstract] [Full Text] [Related]
12. Hardystonite-Coated Poly(l-lactide) Nanofibrous Scaffold and Efficient Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Tavangar B, Arasteh S, Edalatkhah H, Salimi A, Doostmohammadi A, Seyedjafari E. Artif Organs; 2018 Nov 01; 42(11):E335-E348. PubMed ID: 28653337 [Abstract] [Full Text] [Related]
13. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Xu T, Miszuk JM, Zhao Y, Sun H, Fong H. Adv Healthc Mater; 2015 Oct 28; 4(15):2238-46. PubMed ID: 26332611 [Abstract] [Full Text] [Related]
14. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q. J Biomed Mater Res A; 2015 Apr 28; 103(4):1424-35. PubMed ID: 25046153 [Abstract] [Full Text] [Related]
15. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers. Saburi E, Islami M, Hosseinzadeh S, Moghadam AS, Mansour RN, Azadian E, Joneidi Z, Nikpoor AR, Ghadiani MH, Khodaii Z, Ardeshirylajimi A. Gene; 2019 May 15; 696():72-79. PubMed ID: 30772518 [Abstract] [Full Text] [Related]
16. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X. J Biomed Mater Res A; 2010 May 15; 93(2):753-62. PubMed ID: 19642211 [Abstract] [Full Text] [Related]
17. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VG. J Biomater Appl; 2014 Jul 15; 29(1):46-58. PubMed ID: 24287981 [Abstract] [Full Text] [Related]
19. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J, Yu X. Acta Biomater; 2010 Aug 15; 6(8):3004-12. PubMed ID: 20144749 [Abstract] [Full Text] [Related]
20. Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. Zhao X, Zhou L, Li Q, Zou Q, Du C. Carbohydr Polym; 2018 Sep 01; 195():225-234. PubMed ID: 29804972 [Abstract] [Full Text] [Related] Page: [Next] [New Search]