These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


541 related items for PubMed ID: 30143127

  • 1. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering.
    Zheng A, Cao L, Liu Y, Wu J, Zeng D, Hu L, Zhang X, Jiang X.
    Carbohydr Polym; 2018 Nov 01; 199():244-255. PubMed ID: 30143127
    [Abstract] [Full Text] [Related]

  • 2. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels.
    Han Y, Zeng Q, Li H, Chang J.
    Acta Biomater; 2013 Nov 01; 9(11):9107-17. PubMed ID: 23796407
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G.
    Int J Biol Macromol; 2017 Feb 01; 95():14-23. PubMed ID: 27818295
    [Abstract] [Full Text] [Related]

  • 5. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C, Venugopal JR, Tham AY, Ramakrishna S, Kumar SD.
    Mater Sci Eng C Mater Biol Appl; 2015 Apr 01; 49():776-785. PubMed ID: 25687008
    [Abstract] [Full Text] [Related]

  • 6. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering].
    Tu Y, Wu T, Ye A, Xu J, Guo F, Cheng X.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec 01; 27(12):1499-505. PubMed ID: 24640374
    [Abstract] [Full Text] [Related]

  • 7. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair.
    Yang W, Xu H, Lan Y, Zhu Q, Liu Y, Huang S, Shi S, Hancharou A, Tang B, Guo R.
    Int J Biol Macromol; 2019 Jun 01; 130():58-67. PubMed ID: 30797808
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation.
    Tong S, Xu DP, Liu ZM, Du Y, Wang XK.
    J Craniofac Surg; 2016 Mar 01; 27(2):509-15. PubMed ID: 26890455
    [Abstract] [Full Text] [Related]

  • 10. Macroporous scaffolds developed from CaSiO3 nanofibers regulating bone regeneration via controlled calcination.
    Du Z, Zhao Z, Liu H, Liu X, Zhang X, Huang Y, Leng H, Cai Q, Yang X.
    Mater Sci Eng C Mater Biol Appl; 2020 Aug 01; 113():111005. PubMed ID: 32487409
    [Abstract] [Full Text] [Related]

  • 11. Delivery vehicle of muscle-derived irisin based on silk/calcium silicate/sodium alginate composite scaffold for bone regeneration.
    Xin X, Wu J, Zheng A, Jiao D, Liu Y, Cao L, Jiang X.
    Int J Nanomedicine; 2019 Aug 01; 14():1451-1467. PubMed ID: 30863071
    [Abstract] [Full Text] [Related]

  • 12. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y, Zhang W, Wang Z, Wang Z, Xie Q, Niu H, Guo H, Yuan Y, Liu C.
    Acta Biomater; 2016 Oct 15; 44():110-24. PubMed ID: 27544808
    [Abstract] [Full Text] [Related]

  • 13. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE, Tripathy N, Lee DH, Park JH, Khang G.
    ACS Appl Mater Interfaces; 2018 Oct 03; 10(39):32955-32964. PubMed ID: 30188112
    [Abstract] [Full Text] [Related]

  • 14. Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway.
    Guan J, Zhang J, Guo S, Zhu H, Zhu Z, Li H, Wang Y, Zhang C, Chang J.
    Biomaterials; 2015 Jul 03; 55():1-11. PubMed ID: 25934447
    [Abstract] [Full Text] [Related]

  • 15. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering.
    Lin YH, Chiu YC, Shen YF, Wu YA, Shie MY.
    J Mater Sci Mater Med; 2017 Dec 27; 29(1):11. PubMed ID: 29282550
    [Abstract] [Full Text] [Related]

  • 16. [Preparation of silk fibroin-chitosan scaffolds and their properties].
    Zhang P, Wang W.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec 27; 27(12):1517-22. PubMed ID: 24640377
    [Abstract] [Full Text] [Related]

  • 17. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin.
    Yao MZ, Huang-Fu MY, Liu HN, Wang XR, Sheng X, Gao JQ.
    Int J Nanomedicine; 2016 Dec 27; 11():6181-6194. PubMed ID: 27920525
    [Abstract] [Full Text] [Related]

  • 18. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y, Shao W, Qian W, He J, Zhou Y, Qi K, Wang L, Cui S, Wang R.
    Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():195-207. PubMed ID: 29519429
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C, Lin K, Chang J, Sun J.
    Biomaterials; 2013 Jan 01; 34(1):64-77. PubMed ID: 23069715
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.