These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 30144476

  • 1. Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle.
    Yang Y, Meng Y, Ye J, Xia X, Wang H, Li L, Dong W, Jin D, Liu Y.
    J Control Release; 2018 Oct 10; 287():103-120. PubMed ID: 30144476
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Natural Particulates Inspired Specific-Targeted Codelivery of siRNA and Paclitaxel for Collaborative Antitumor Therapy.
    Wang R, Zhao Z, Han Y, Hu S, Opoku-Damoah Y, Zhou J, Yin L, Ding Y.
    Mol Pharm; 2017 Sep 05; 14(9):2999-3012. PubMed ID: 28753317
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Co-delivery of VEGF siRNA and Etoposide for Enhanced Anti-angiogenesis and Anti-proliferation Effect via Multi-functional Nanoparticles for Orthotopic Non-Small Cell Lung Cancer Treatment.
    Li F, Wang Y, Chen WL, Wang DD, Zhou YJ, You BG, Liu Y, Qu CX, Yang SD, Chen MT, Zhang XN.
    Theranostics; 2019 Sep 05; 9(20):5886-5898. PubMed ID: 31534526
    [Abstract] [Full Text] [Related]

  • 7. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy.
    Zhang C, Zhao Y, Zhang E, Jiang M, Zhi D, Chen H, Cui S, Zhen Y, Cui J, Zhang S.
    Drug Deliv; 2020 Dec 05; 27(1):1397-1411. PubMed ID: 33096948
    [Abstract] [Full Text] [Related]

  • 8. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting.
    Tang B, Zaro JL, Shen Y, Chen Q, Yu Y, Sun P, Wang Y, Shen WC, Tu J, Sun C.
    J Control Release; 2018 Jun 10; 279():147-156. PubMed ID: 29653223
    [Abstract] [Full Text] [Related]

  • 9. Bioinspired tumor-homing nanoplatform for co-delivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic therapy.
    Xu C, Liu W, Hu Y, Li W, Di W.
    Theranostics; 2020 Jun 10; 10(7):3325-3339. PubMed ID: 32194871
    [Abstract] [Full Text] [Related]

  • 10. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
    Yu DH, Lu Q, Xie J, Fang C, Chen HZ.
    Biomaterials; 2010 Mar 10; 31(8):2278-92. PubMed ID: 20053444
    [Abstract] [Full Text] [Related]

  • 11. Smart Polymeric Nanoparticles with pH-Responsive and PEG-Detachable Properties (II): Co-Delivery of Paclitaxel and VEGF siRNA for Synergistic Breast Cancer Therapy in Mice.
    Jin M, Hou Y, Quan X, Chen L, Gao Z, Huang W.
    Int J Nanomedicine; 2021 Mar 10; 16():5479-5494. PubMed ID: 34413645
    [Abstract] [Full Text] [Related]

  • 12. Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery.
    Tanaka K, Kanazawa T, Horiuchi S, Ando T, Sugawara K, Takashima Y, Seta Y, Okada H.
    Int J Pharm; 2013 Oct 15; 455(1-2):40-7. PubMed ID: 23911914
    [Abstract] [Full Text] [Related]

  • 13. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel.
    Yang R, Meng F, Ma S, Huang F, Liu H, Zhong Z.
    Biomacromolecules; 2011 Aug 08; 12(8):3047-55. PubMed ID: 21726090
    [Abstract] [Full Text] [Related]

  • 14. Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and siRNA for enhanced tumor growth suppression.
    Jang YL, Yun UJ, Lee MS, Kim MG, Son S, Lee K, Chae SY, Lim DW, Kim HT, Kim SH, Jeong JH.
    Int J Pharm; 2012 Sep 15; 434(1-2):488-93. PubMed ID: 22613208
    [Abstract] [Full Text] [Related]

  • 15. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery.
    Park EK, Kim SY, Lee SB, Lee YM.
    J Control Release; 2005 Dec 05; 109(1-3):158-68. PubMed ID: 16263189
    [Abstract] [Full Text] [Related]

  • 16. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance.
    Zhang J, Zhao X, Chen Q, Yin X, Xin X, Li K, Qiao M, Hu H, Chen D, Zhao X.
    Acta Biomater; 2017 Mar 01; 50():381-395. PubMed ID: 27956367
    [Abstract] [Full Text] [Related]

  • 17. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer.
    Yin T, Wang L, Yin L, Zhou J, Huo M.
    Biomaterials; 2015 Aug 01; 61():10-25. PubMed ID: 25996409
    [Abstract] [Full Text] [Related]

  • 18. siRNA and chemotherapeutic molecules entrapped into a redox-responsive platform for targeted synergistic combination therapy of glioma.
    Wen L, Wen C, Zhang F, Wang K, Yuan H, Hu F.
    Nanomedicine; 2020 Aug 01; 28():102218. PubMed ID: 32413510
    [Abstract] [Full Text] [Related]

  • 19. Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer.
    Dong D, Gao W, Liu Y, Qi XR.
    Cancer Lett; 2015 Apr 10; 359(2):178-86. PubMed ID: 25592040
    [Abstract] [Full Text] [Related]

  • 20. Polyethylene glycol-poly(ε-benzyloxycarbonyl-l-lysine)-conjugated VEGF siRNA for antiangiogenic gene therapy in hepatocellular carcinoma.
    Wang G, Gao X, Gu G, Shao Z, Li M, Wang P, Yang J, Cai X, Li Y.
    Int J Nanomedicine; 2017 Apr 10; 12():3591-3603. PubMed ID: 28533682
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.