These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 30146841
1. Smartphone Application Monitoring of Acceleration Forces During Pneumatic Tube System Transport of Emergency Department Patient Samples. Heireman L, Stroobants J, Uyttenbroeck W, Goossens Y, Dreezen C, Luyts D, Broeck LVD, Delanghe J, Heylen E, Mahieu B. Clin Lab; 2018 Jul 01; 64(7):1297-1304. PubMed ID: 30146841 [Abstract] [Full Text] [Related]
2. Smartphone monitoring of pneumatic tube system-induced sample hemolysis. Mullins GR, Harrison JH, Bruns DE. Clin Chim Acta; 2016 Nov 01; 462():1-5. PubMed ID: 27553857 [Abstract] [Full Text] [Related]
3. The Effect of Different Blood Drawing Methods on Hemolysis and Test Results from Intravenous Catheters Used in Emergency Departments. Kazezoglu C, Serin E. Clin Lab; 2019 Jan 01; 65(1):. PubMed ID: 30775901 [Abstract] [Full Text] [Related]
4. Does Pneumatic Tube System Transport Contribute to Hemolysis in ED Blood Samples? Phelan MP, Reineks EZ, Hustey FM, Berriochoa JP, Podolsky SR, Meldon S, Schold JD, Chamberlin J, Procop GW. West J Emerg Med; 2016 Sep 01; 17(5):557-60. PubMed ID: 27625719 [Abstract] [Full Text] [Related]
5. Use of clinical data and acceleration profiles to validate pneumatic transportation systems. Gils C, Broell F, Vinholt PJ, Nielsen C, Nybo M. Clin Chem Lab Med; 2020 Mar 26; 58(4):560-568. PubMed ID: 31804954 [Abstract] [Full Text] [Related]
6. Determination of hemolysis thresholds by the use of data loggers in pneumatic tube systems. Streichert T, Otto B, Schnabel C, Nordholt G, Haddad M, Maric M, Petersmann A, Jung R, Wagener C. Clin Chem; 2011 Oct 26; 57(10):1390-7. PubMed ID: 21836074 [Abstract] [Full Text] [Related]
7. The Effect of Pneumatic Tube Systems on the Hemolysis of Biochemistry Blood Samples. Cakirca G, Erdal H. J Emerg Nurs; 2017 May 26; 43(3):255-258. PubMed ID: 28359708 [Abstract] [Full Text] [Related]
8. The use of S-Monovette is effective to reduce the burden of hemolysis in a large urban emergency department. Lippi G, Bonelli P, Bonfanti L, Cervellin G. Biochem Med (Zagreb); 2015 May 26; 25(1):69-72. PubMed ID: 25672469 [Abstract] [Full Text] [Related]
9. Effect of pneumatic tube delivery system rate and distance on hemolysis of blood specimens. Evliyaoğlu O, Toprak G, Tekin A, Başarali MK, Kilinç C, Colpan L. J Clin Lab Anal; 2012 Feb 26; 26(2):66-9. PubMed ID: 22467320 [Abstract] [Full Text] [Related]
10. Parameters for Validating a Hospital Pneumatic Tube System. Farnsworth CW, Webber DM, Krekeler JA, Budelier MM, Bartlett NL, Gronowski AM. Clin Chem; 2019 May 26; 65(5):694-702. PubMed ID: 30808643 [Abstract] [Full Text] [Related]
11. Causes, consequences and management of sample hemolysis in the clinical laboratory. Heireman L, Van Geel P, Musger L, Heylen E, Uyttenbroeck W, Mahieu B. Clin Biochem; 2017 Dec 26; 50(18):1317-1322. PubMed ID: 28947321 [Abstract] [Full Text] [Related]
12. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems. Mullins GR, Bruns DE. Clin Chim Acta; 2017 Oct 26; 473():9-13. PubMed ID: 28803746 [Abstract] [Full Text] [Related]
13. Impact of a pneumatic tube system transport on hemostasis parameters measurement: the experiment of Cochin universitary hospital (AP-HP, Paris, France). Calmette L, Ibrahim F, Gouin I, Horellou MH, Mazoyer É, Fontenay M, Flaujac C. Ann Biol Clin (Paris); 2017 Feb 01; 75(1):93-100. PubMed ID: 28132949 [Abstract] [Full Text] [Related]
14. Effect of acceleration forces during transport through a pneumatic tube system on ROTEM® analysis. Amann G, Zehntner C, Marti F, Colucci G. Clin Chem Lab Med; 2012 Mar 09; 50(8):1335-42. PubMed ID: 22868797 [Abstract] [Full Text] [Related]
15. Speed of sample transportation by a pneumatic tube system can influence the degree of hemolysis. Tiwari AK, Pandey P, Dixit S, Raina V. Clin Chem Lab Med; 2011 Nov 10; 50(3):471-4. PubMed ID: 22070350 [Abstract] [Full Text] [Related]
16. Evaluation of sample hemolysis in blood collected by S-Monovette using vacuum or aspiration mode. Lippi G, Avanzini P, Musa R, Sandei F, Aloe R, Cervellin G. Biochem Med (Zagreb); 2013 Nov 10; 23(1):64-9. PubMed ID: 23457766 [Abstract] [Full Text] [Related]
17. Impact of Pneumatic Transport System on Preanalytical Phase Affecting Clinical Biochemistry Results. Kumari S, Kumar S, Bharti N, Shekhar R. J Lab Physicians; 2023 Mar 10; 15(1):48-55. PubMed ID: 37064988 [Abstract] [Full Text] [Related]
18. Comparison of a two-step Tempus600 hub solution single-tube vs. container-based, one-step pneumatic transport system. Luginbühl M, Frey K, Gawinecka J, von Eckardstein A, Saleh L. Clin Chem Lab Med; 2024 Oct 28; 62(11):2215-2222. PubMed ID: 38742247 [Abstract] [Full Text] [Related]
19. Pneumatic tube-transported blood samples in lithium heparinate gel separator tubes may be more susceptible to haemolysis than blood samples in serum tubes. Böckel-Frohnhöfer N, Hübner U, Hummel B, Geisel J. Scand J Clin Lab Invest; 2014 Oct 28; 74(7):599-602. PubMed ID: 24909156 [Abstract] [Full Text] [Related]
20. Influence of pneumatic tube system transport on routinely assessed and spectrophotometric cerebrospinal fluid parameters. Broz P, Rajdl D, Racek J, Zenkova J, Petrikova V. Clin Chem Lab Med; 2017 Jan 01; 55(1):47-52. PubMed ID: 27362961 [Abstract] [Full Text] [Related] Page: [Next] [New Search]