These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
382 related items for PubMed ID: 30155540
1. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries. Xu T, Wang D, Qiu P, Zhang J, Wang Q, Xia B, Xie X. Nanoscale; 2018 Sep 13; 10(35):16638-16644. PubMed ID: 30155540 [Abstract] [Full Text] [Related]
2. Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries. Oli N, Liza Castillo DC, Weiner BR, Morell G, Katiyar RS. Molecules; 2024 Oct 08; 29(19):. PubMed ID: 39407676 [Abstract] [Full Text] [Related]
3. A facile in situ synthesis of SiC&Si@CNT composite 3D frameworks as an anode material for lithium-ion batteries. Su W, Liang Y, Zuo Y, Tang Y. Dalton Trans; 2019 Sep 14; 48(34):12964-12973. PubMed ID: 31397472 [Abstract] [Full Text] [Related]
4. High-Performance Porous Silicon/Nanosilver Anodes from Industrial Low-Grade Silicon for Lithium-Ion Batteries. Xi F, Zhang Z, Wan X, Li S, Ma W, Chen X, Chen R, Luo B, Wang L. ACS Appl Mater Interfaces; 2020 Oct 28; 12(43):49080-49089. PubMed ID: 33052668 [Abstract] [Full Text] [Related]
5. Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries. Zeng L, Liu R, Han L, Luo F, Chen X, Wang J, Qian Q, Chen Q, Wei M. Chemistry; 2018 Apr 03; 24(19):4841-4848. PubMed ID: 29194824 [Abstract] [Full Text] [Related]
6. Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries. Kim SY, Lee J, Kim BH, Kim YJ, Yang KS, Park MS. ACS Appl Mater Interfaces; 2016 May 18; 8(19):12109-17. PubMed ID: 27112916 [Abstract] [Full Text] [Related]
7. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries. Feng X, Yang J, Bie Y, Wang J, Nuli Y, Lu W. Nanoscale; 2014 Nov 07; 6(21):12532-9. PubMed ID: 25177830 [Abstract] [Full Text] [Related]
8. A Facile, One-Step Synthesis of Silicon/Silicon Carbide/Carbon Nanotube Nanocomposite as a Cycling-Stable Anode for Lithium Ion Batteries. Zhang Y, Hu K, Zhou Y, Xia Y, Yu N, Wu G, Zhu Y, Wu Y, Huang H. Nanomaterials (Basel); 2019 Nov 15; 9(11):. PubMed ID: 31731756 [Abstract] [Full Text] [Related]
9. Flexible Carbon Nanotubes Confined Yolk-Shelled Silicon-Based Anode with Superior Conductivity for Lithium Storage. Han N, Li J, Wang X, Zhang C, Liu G, Li X, Qu J, Peng Z, Zhu X, Zhang L. Nanomaterials (Basel); 2021 Mar 11; 11(3):. PubMed ID: 33799498 [Abstract] [Full Text] [Related]
10. Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries. Su J, Zhao J, Li L, Zhang C, Chen C, Huang T, Yu A. ACS Appl Mater Interfaces; 2017 May 31; 9(21):17807-17813. PubMed ID: 28485912 [Abstract] [Full Text] [Related]
11. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries. Huang S, Cheong LZ, Wang D, Shen C. ACS Appl Mater Interfaces; 2017 Jul 19; 9(28):23672-23678. PubMed ID: 28661118 [Abstract] [Full Text] [Related]
12. Controllable Self-Assembly of Micro-Nanostructured Si-Embedded Graphite/Graphene Composite Anode for High-Performance Li-Ion Batteries. Lin N, Xu T, Li T, Han Y, Qian Y. ACS Appl Mater Interfaces; 2017 Nov 15; 9(45):39318-39325. PubMed ID: 29058864 [Abstract] [Full Text] [Related]
13. Lithiation of silicon nanoparticles confined in carbon nanotubes. Yu WJ, Liu C, Hou PX, Zhang L, Shan XY, Li F, Cheng HM. ACS Nano; 2015 May 26; 9(5):5063-71. PubMed ID: 25869474 [Abstract] [Full Text] [Related]
15. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Shim HC, Kim I, Woo CS, Lee HJ, Hyun S. Nanoscale; 2017 Apr 06; 9(14):4713-4720. PubMed ID: 28327775 [Abstract] [Full Text] [Related]
16. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Wang L, Gao B, Peng C, Peng X, Fu J, Chu PK, Huo K. Nanoscale; 2015 Sep 07; 7(33):13840-7. PubMed ID: 26098990 [Abstract] [Full Text] [Related]
17. Silicon Nanoparticles Embedded in Chemical-Expanded Graphite through Electrostatic Attraction for High-Performance Lithium-Ion Batteries. Liu X, Liu H, Cao Y, Wu X, Shan Z. ACS Appl Mater Interfaces; 2023 Feb 09. PubMed ID: 36758169 [Abstract] [Full Text] [Related]
18. Engineering the Core-Shell-Structured NCNTs-Ni2Si@Porous Si Composite with Robust Ni-Si Interfacial Bonding for High-Performance Li-Ion Batteries. Chen M, Jing QS, Sun HB, Xu JQ, Yuan ZY, Ren JT, Ding AX, Huang ZY, Dong MY. Langmuir; 2019 May 14; 35(19):6321-6332. PubMed ID: 31009568 [Abstract] [Full Text] [Related]
19. Coupling of a conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries. Nazir A, Le HTT, Min CW, Kasbe A, Kim J, Jin CS, Park CJ. Nanoscale; 2020 Jan 23; 12(3):1629-1642. PubMed ID: 31872835 [Abstract] [Full Text] [Related]
20. New Chemical Synthesis Strategy To Construct a Silicon/Carbon Nanotubes/Carbon-Integrated Composite with Outstanding Lithium Storage Capability. Yan X, Fu Z, Zhou L, Hu L, Xia Y, Zhang W, Gan Y, Zhang J, He X, Huang H. ACS Appl Mater Interfaces; 2023 Apr 12; 15(14):17986-17993. PubMed ID: 36988389 [Abstract] [Full Text] [Related] Page: [Next] [New Search]