These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution. Nagel W. J Physiol; 1977 Aug; 269(3):777-96. PubMed ID: 302335 [Abstract] [Full Text] [Related]
3. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin. Nagel W, Katz U. Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157 [Abstract] [Full Text] [Related]
12. Voltage-clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. Ildefonse M, Rougier O. J Physiol; 1972 Apr; 222(2):373-95. PubMed ID: 4537514 [Abstract] [Full Text] [Related]
13. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane. Nielsen R. Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546 [Abstract] [Full Text] [Related]
14. K+-permeability of the outer border of the frog skin (R. temporaria). Nagel W, Hirschmann W. J Membr Biol; 1980 Feb; 52(2):107-13. PubMed ID: 6965987 [Abstract] [Full Text] [Related]
19. Characteristics of the entry process for sodium in transporting epithelia as revealed with amiloride. Cuthbert AW, Shum WK. J Physiol; 1976 Mar; 255(3):587-604. PubMed ID: 1083430 [Abstract] [Full Text] [Related]