These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 3016228

  • 1. Regulation of mannitol catabolism in Candida albicans: evidence for cyclic AMP-independent glucose effect.
    Niimi M, Tokunaga M, Nakayama H.
    J Med Vet Mycol; 1986 Jun; 24(3):211-7. PubMed ID: 3016228
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. [Glucose effect in Candida albicans].
    Niimi M.
    Fukuoka Igaku Zasshi; 1984 Jun; 75(6):356-65. PubMed ID: 6092246
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Regulation of N-acetylglucosaminidase production in Candida albicans.
    Niimi K, Niimi M, Shepherd MG, Cannon RD.
    Arch Microbiol; 1997 Dec; 168(6):464-72. PubMed ID: 9385137
    [Abstract] [Full Text] [Related]

  • 10. D-mannitol metabolism by Aspergillus candidus.
    Strandberg GW.
    J Bacteriol; 1969 Mar; 97(3):1305-9. PubMed ID: 4304850
    [Abstract] [Full Text] [Related]

  • 11. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA, Yin CY, Molloy C, Templeton MD, Shepherd MG.
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [Abstract] [Full Text] [Related]

  • 12. The role of glucose in the pH regulation of germ-tube formation in Candida albicans.
    Pollack JH, Hashimoto T.
    J Gen Microbiol; 1987 Feb; 133(2):415-24. PubMed ID: 3309155
    [Abstract] [Full Text] [Related]

  • 13. Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose.
    Grobben GJ, Peters SW, Wisselink HW, Weusthuis RA, Hoefnagel MH, Hugenholtz J, Eggink G.
    Appl Environ Microbiol; 2001 Jun; 67(6):2867-70. PubMed ID: 11375210
    [Abstract] [Full Text] [Related]

  • 14. Semiinducible oxidation of some carbohydrates and polyols by starved Mycobacteria.
    Szymona O, Szymona M.
    Acta Microbiol Pol A; 1971 Jun; 4(1):125-33. PubMed ID: 5004275
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Enzyme activities associated with carbohydrate synthesis and breakdown in the yeast and mycelial forms of Candida albicans.
    Chattaway FW, Bishop R, Holmes MR, Odds FC, Barlow AJ.
    J Gen Microbiol; 1973 Mar; 75(1):97-109. PubMed ID: 4269159
    [No Abstract] [Full Text] [Related]

  • 17. Ca2+ and Cu2+ supplementation increases mannitol production by Candida magnoliae.
    Lee JK, Oh DK, Song HY, Kim IW.
    Biotechnol Lett; 2007 Feb; 29(2):291-4. PubMed ID: 17120092
    [Abstract] [Full Text] [Related]

  • 18. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.
    Parmentier S, Arnaut F, Soetaert W, Vandamme EJ.
    Commun Agric Appl Biol Sci; 2003 Feb; 68(2 Pt A):255-62. PubMed ID: 15296174
    [Abstract] [Full Text] [Related]

  • 19. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.
    Brambilla E, Ionescu AC, Cazzaniga G, Ottobelli M, Samaranayake LP.
    J Basic Microbiol; 2016 May; 56(5):480-92. PubMed ID: 26456320
    [Abstract] [Full Text] [Related]

  • 20. Role of mannitol dehydrogenases in osmoprotection of Gluconobacter oxydans.
    Zahid N, Deppenmeier U.
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9967-9978. PubMed ID: 27338577
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.