These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
432 related items for PubMed ID: 30169135
41. Characterization of Resistance to Six Chemical Classes of Site-Specific Fungicides Registered for Gray Mold Control on Strawberry in Spain. Fernández-Ortuño D, Torés JA, Chamorro M, Pérez-García A, de Vicente A. Plant Dis; 2016 Nov; 100(11):2234-2239. PubMed ID: 30682911 [Abstract] [Full Text] [Related]
42. Old but Gold: Captan Is a Valuable Tool for Managing Anthracnose and Botrytis Fruit Rots and Improving Strawberry Yields Based on a Meta-Analysis. Gama AB, Cordova LG, Baggio JS, Mertely JC, Peres NA. Plant Dis; 2023 Oct; 107(10):3071-3078. PubMed ID: 36947843 [Abstract] [Full Text] [Related]
43. Molecular characterization of boscalid- and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram. Avenot HF, Thomas A, Gitaitis RD, Langston DB, Stevenson KL. Pest Manag Sci; 2012 Apr; 68(4):645-51. PubMed ID: 22076736 [Abstract] [Full Text] [Related]
44. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit. Jurick WM, Macarisin O, Gaskins VL, Park E, Yu J, Janisiewicz W, Peter KA. Phytopathology; 2017 Mar; 107(3):362-368. PubMed ID: 27841961 [Abstract] [Full Text] [Related]
45. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Veloukas T, Kalogeropoulou P, Markoglou AN, Karaoglanidis GS. Phytopathology; 2014 Apr; 104(4):347-56. PubMed ID: 24168041 [Abstract] [Full Text] [Related]
46. Resistance to Pyraclostrobin and Boscalid in Populations of Botrytis cinerea from Stored Apples in Washington State. Kim YK, Xiao CL. Plant Dis; 2010 May; 94(5):604-612. PubMed ID: 30754475 [Abstract] [Full Text] [Related]
47. First Report of Fludioxonil Resistance in Botrytis cinerea, the Causal Agent of Gray Mold, from Strawberry Fields in Maryland and South Carolina. Fernández-Ortuño D, Grabke A, Bryson PK, Rouse RJ, Rollins P, Schnabel G. Plant Dis; 2014 May; 98(5):692. PubMed ID: 30708511 [Abstract] [Full Text] [Related]
48. Validation of a Decision Support System for Blueberry Anthracnose and Fungicide Sensitivity of Colletotrichum gloeosporioides Isolates. Gama AB, Cordova LG, Rebello CS, Peres NA. Plant Dis; 2021 Jun; 105(6):1806-1813. PubMed ID: 32954983 [Abstract] [Full Text] [Related]
49. Shift of Sensitivity in Botrytis cinerea to Benzimidazole Fungicides in Strawberry Greenhouse Ascribing to the Rising-lowering of E198A Subpopulation and its Visual, On-site Monitoring by Loop-mediated Isothermal Amplification. Liu YH, Yuan SK, Hu XR, Zhang CQ. Sci Rep; 2019 Aug 12; 9(1):11644. PubMed ID: 31406191 [Abstract] [Full Text] [Related]
50. Fungicide resistance in Botrytis cinerea and identification of Botrytis species associated with blueberry in Michigan. Abbey JA, Alzohairy SA, Neugebauer KA, Hatlen RJ, Miles TD. Front Microbiol; 2024 Aug 12; 15():1425392. PubMed ID: 39104578 [Abstract] [Full Text] [Related]
51. Resistance to the SDHI Fungicides Boscalid, Fluopyram, Fluxapyroxad, and Penthiopyrad in Botrytis cinerea from Commercial Strawberry Fields in Spain. Fernández-Ortuño D, Pérez-García A, Chamorro M, de la Peña E, de Vicente A, Torés JA. Plant Dis; 2017 Jul 12; 101(7):1306-1313. PubMed ID: 30682955 [Abstract] [Full Text] [Related]
52. Sensitivity of Phacidiopycnis spp. Isolates from Pome Fruit to Six Pre- and Postharvest Fungicides. Ali EM, Pandit LK, Mulvaney KA, Amiri A. Plant Dis; 2018 Mar 12; 102(3):533-539. PubMed ID: 30673472 [Abstract] [Full Text] [Related]
53. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China. Sang C, Ren W, Wang J, Xu H, Zhang Z, Zhou M, Chen C, Wang K. Pestic Biochem Physiol; 2018 May 12; 147():110-118. PubMed ID: 29933980 [Abstract] [Full Text] [Related]
54. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR, Sharifi-Tehrani A, Hedjaroude GA. Commun Agric Appl Biol Sci; 2007 May 12; 72(4):795-800. PubMed ID: 18396812 [Abstract] [Full Text] [Related]
55. Postinfection Application of Fenhexamid at Lower Doses in Conjunction with Captan Slowed Fungicide Resistance Selection in Botrytis cinerea on Detached Grape Berries. Boushell SC, Hu M. Phytopathology; 2024 Feb 12; 114(2):368-377. PubMed ID: 37606323 [Abstract] [Full Text] [Related]
56. Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea). De Miccolis Angelini RM, Masiello M, Rotolo C, Pollastro S, Faretra F. Pest Manag Sci; 2014 Dec 12; 70(12):1884-93. PubMed ID: 24481672 [Abstract] [Full Text] [Related]
57. Identification and Characterization of Botrytis fragariae Isolates on Strawberry in the United States. Dowling ME, Hu MJ, Schnabel G. Plant Dis; 2017 Oct 12; 101(10):1769-1773. PubMed ID: 30676928 [Abstract] [Full Text] [Related]
58. Gray mold populations in german strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Leroch M, Plesken C, Weber RW, Kauff F, Scalliet G, Hahn M. Appl Environ Microbiol; 2013 Jan 12; 79(1):159-67. PubMed ID: 23087030 [Abstract] [Full Text] [Related]
59. Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Bardas GA, Myresiotis CK, Karaoglanidis GS. Phytopathology; 2008 Apr 12; 98(4):443-50. PubMed ID: 18944193 [Abstract] [Full Text] [Related]
60. Identification and Characterization of Fungicide Resistance in Botrytis Populations from Small Fruit Fields in the Mid-Atlantic United States. Cosseboom SD, Hu M. Plant Dis; 2021 Mar 09. PubMed ID: 33719541 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]