These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 30171386

  • 1. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation.
    Stieger C, Guan X, Farahmand RB, Page BF, Merchant JP, Abur D, Nakajima HH.
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):523-539. PubMed ID: 30171386
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT, Jenkins HA, Tollin DJ, Easter JR.
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
    Cheng YS, Raufer S, Guan X, Halpin CF, Lee DJ, Nakajima HH.
    Ear Hear; 2020 May; 41(4):804-810. PubMed ID: 31688316
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D, Dobrev I, Prochazka L, Thoele K, Dalbert A, Boss A, Newcomb N, Probst R, Röösli C, Sim JH, Huber A, Pfiffner F.
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [Abstract] [Full Text] [Related]

  • 13. Effects of Skin Thickness on Cochlear Input Signal Using Transcutaneous Bone Conduction Implants.
    Mattingly JK, Greene NT, Jenkins HA, Tollin DJ, Easter JR, Cass SP.
    Otol Neurotol; 2015 Sep; 36(8):1403-11. PubMed ID: 26164446
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones.
    Nakajima HH, Dong W, Olson ES, Rosowski JJ, Ravicz ME, Merchant SN.
    Otol Neurotol; 2010 Apr; 31(3):506-11. PubMed ID: 19841600
    [Abstract] [Full Text] [Related]

  • 15. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C, Rosowski JJ, Nakajima HH.
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V.
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [Abstract] [Full Text] [Related]

  • 18. Bone-conduction hyperacusis induced by superior canal dehiscence in human: the underlying mechanism.
    Guan X, Cheng YS, Galaiya DJ, Rosowski JJ, Lee DJ, Nakajima HH.
    Sci Rep; 2020 Oct 06; 10(1):16564. PubMed ID: 33024221
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT, Mattingly JK, Jenkins HA, Tollin DJ, Easter JR, Cass SP.
    Otol Neurotol; 2015 Sep 06; 36(9):1554-61. PubMed ID: 26333018
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.