These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 30172297

  • 1. Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine.
    Gu H, Shi K, Liao Z, Qi H, Chen S, Wang H, Li S, Ma Y, Wang J.
    Microbiol Res; 2018 Oct; 215():114-125. PubMed ID: 30172297
    [Abstract] [Full Text] [Related]

  • 2. Novel Cysteine Desulfidase CdsB Involved in Releasing Cysteine Repression of Toxin Synthesis in Clostridium difficile.
    Gu H, Yang Y, Wang M, Chen S, Wang H, Li S, Ma Y, Wang J.
    Front Cell Infect Microbiol; 2017 Oct; 7():531. PubMed ID: 29376034
    [Abstract] [Full Text] [Related]

  • 3. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.
    Zhang Y, Hamza T, Gao S, Feng H.
    Biochem Biophys Res Commun; 2015 Apr 03; 459(2):259-263. PubMed ID: 25725153
    [Abstract] [Full Text] [Related]

  • 4. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN, Krall EG, McBride SM.
    J Bacteriol; 2020 Jan 02; 202(2):. PubMed ID: 31659010
    [Abstract] [Full Text] [Related]

  • 5. Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates.
    Anjuwon-Foster BR, Maldonado-Vazquez N, Tamayo R.
    J Bacteriol; 2018 Jul 15; 200(14):. PubMed ID: 29735765
    [Abstract] [Full Text] [Related]

  • 6. Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus.
    Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, Dumoulard B, Hamel B, Petit A, Lalande V, Ma L, Bouchier C, Barbut F, Dupuy B.
    Sci Rep; 2015 Oct 08; 5():15023. PubMed ID: 26446480
    [Abstract] [Full Text] [Related]

  • 7. Identification of an Essential Region for Translocation of Clostridium difficile Toxin B.
    Chen S, Wang H, Gu H, Sun C, Li S, Feng H, Wang J.
    Toxins (Basel); 2016 Aug 15; 8(8):. PubMed ID: 27537911
    [Abstract] [Full Text] [Related]

  • 8. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in Clostridium difficile.
    Chen KY, Rathod J, Chiu YC, Chen JW, Tsai PJ, Huang IH.
    Front Cell Infect Microbiol; 2019 Aug 15; 9():356. PubMed ID: 31681632
    [Abstract] [Full Text] [Related]

  • 9. Clostridium difficile Adhesins.
    Péchiné S, Denève-Larrazet C, Collignon A.
    Methods Mol Biol; 2016 Aug 15; 1476():91-101. PubMed ID: 27507335
    [Abstract] [Full Text] [Related]

  • 10. Phase variation of Clostridium difficile virulence factors.
    Anjuwon-Foster BR, Tamayo R.
    Gut Microbes; 2018 Jan 02; 9(1):76-83. PubMed ID: 28806147
    [Abstract] [Full Text] [Related]

  • 11. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.
    Olling A, Seehase S, Minton NP, Tatge H, Schröter S, Kohlscheen S, Pich A, Just I, Gerhard R.
    Microb Pathog; 2012 Jan 02; 52(1):92-100. PubMed ID: 22107906
    [Abstract] [Full Text] [Related]

  • 12. In vitro efficacy of sodium selenite in reducing toxin production, spore outgrowth and antibiotic resistance in hypervirulent Clostridium difficile.
    Pellissery AJ, Vinayamohan PG, Yin HB, Mooyottu S, Venkitanarayanan K.
    J Med Microbiol; 2019 Jul 02; 68(7):1118-1128. PubMed ID: 31172910
    [Abstract] [Full Text] [Related]

  • 13. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, Gerding DN, Vedantam G.
    J Bacteriol; 2010 Oct 02; 192(19):4904-11. PubMed ID: 20675495
    [Abstract] [Full Text] [Related]

  • 14. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes.
    Antunes A, Dupuy B.
    Methods Mol Biol; 2010 Oct 02; 646():93-115. PubMed ID: 20597005
    [Abstract] [Full Text] [Related]

  • 15. CcpA-mediated repression of Clostridium difficile toxin gene expression.
    Antunes A, Martin-Verstraete I, Dupuy B.
    Mol Microbiol; 2011 Feb 02; 79(4):882-99. PubMed ID: 21299645
    [Abstract] [Full Text] [Related]

  • 16. Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.
    Dubois T, Dancer-Thibonnier M, Monot M, Hamiot A, Bouillaut L, Soutourina O, Martin-Verstraete I, Dupuy B.
    Infect Immun; 2016 Aug 02; 84(8):2389-405. PubMed ID: 27297391
    [Abstract] [Full Text] [Related]

  • 17. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile.
    Purcell EB, McKee RW, Bordeleau E, Burrus V, Tamayo R.
    J Bacteriol; 2016 Feb 01; 198(3):565-77. PubMed ID: 26598364
    [Abstract] [Full Text] [Related]

  • 18. Effect of phage infection on toxin production by Clostridium difficile.
    Goh S, Chang BJ, Riley TV.
    J Med Microbiol; 2005 Feb 01; 54(Pt 2):129-135. PubMed ID: 15673505
    [Abstract] [Full Text] [Related]

  • 19. Clostridium difficile Toxin Biology.
    Aktories K, Schwan C, Jank T.
    Annu Rev Microbiol; 2017 Sep 08; 71():281-307. PubMed ID: 28657883
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.