These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
462 related items for PubMed ID: 30172322
1. Nanogapped Au(core) @ Au-Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Shao B, Ma X, Zhao S, Lv Y, Hun X, Wang H, Wang Z. Anal Chim Acta; 2018 Nov 29; 1033():165-172. PubMed ID: 30172322 [Abstract] [Full Text] [Related]
2. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Chen R, Li S, Sun Y, Huo B, Xia Y, Qin Y, Li S, Shi B, He D, Liang J, Gao Z. Mikrochim Acta; 2021 Jul 31; 188(8):281. PubMed ID: 34331147 [Abstract] [Full Text] [Related]
3. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, Wang C, Dong X, Huang X. Biosens Bioelectron; 2016 Mar 15; 77():1183-91. PubMed ID: 26583358 [Abstract] [Full Text] [Related]
4. Plasmonic Au-Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin A Detection. Zheng F, Ke W, Shi L, Liu H, Zhao Y. Anal Chem; 2019 Sep 17; 91(18):11812-11820. PubMed ID: 31424931 [Abstract] [Full Text] [Related]
5. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Song D, Yang R, Fang S, Liu Y, Long F, Zhu A. Mikrochim Acta; 2018 Oct 03; 185(10):491. PubMed ID: 30284043 [Abstract] [Full Text] [Related]
6. SERS aptasensor for simultaneous detection of ochratoxin A and zearalenone utilizing a rigid enhanced substrate (ITO/AuNPs/GO) combined with Au@AgNPs. Xue S, Gao L, Yin L, El-Seedi HR, Abolibda TZ, Zou X, Guo Z. Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan 05; 324():124991. PubMed ID: 39163773 [Abstract] [Full Text] [Related]
7. AuNanostar@4-MBA@Au Core-Shell Nanostructure Coupled with Exonuclease III-Assisted Cycling Amplification for Ultrasensitive SERS Detection of Ochratoxin A. Huang XB, Wu SH, Hu HC, Sun JJ. ACS Sens; 2020 Aug 28; 5(8):2636-2643. PubMed ID: 32786384 [Abstract] [Full Text] [Related]
8. Gold@silver nanodumbbell based inter-nanogap aptasensor for the surface enhanced Raman spectroscopy determination of ochratoxin A. Ma X, Shao B, Wang Z. Anal Chim Acta; 2021 Dec 15; 1188():339189. PubMed ID: 34794565 [Abstract] [Full Text] [Related]
9. Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Chen R, Sun Y, Huo B, Mao Z, Wang X, Li S, Lu R, Li S, Liang J, Gao Z. Anal Chim Acta; 2021 Oct 02; 1180():338888. PubMed ID: 34538331 [Abstract] [Full Text] [Related]
10. Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Pu H, Xie X, Sun DW, Wei Q, Jiang Y. Talanta; 2019 Apr 01; 195():419-425. PubMed ID: 30625564 [Abstract] [Full Text] [Related]
11. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles. Sun HL, Xu MM, Guo QH, Yuan YX, Shen LM, Gu RA, Yao JL. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct 01; 114():579-85. PubMed ID: 23800776 [Abstract] [Full Text] [Related]
12. Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Zengin A, Tamer U, Caykara T. Anal Chim Acta; 2014 Mar 19; 817():33-41. PubMed ID: 24594815 [Abstract] [Full Text] [Related]
13. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles. Zhao Y, Yang Y, Luo Y, Yang X, Li M, Song Q. ACS Appl Mater Interfaces; 2015 Oct 07; 7(39):21780-6. PubMed ID: 26381109 [Abstract] [Full Text] [Related]
14. Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin A using upconversion nanoparticles as labels. Wu S, Duan N, Wang Z, Wang H. Analyst; 2011 Jun 07; 136(11):2306-14. PubMed ID: 21479303 [Abstract] [Full Text] [Related]
15. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Li A, Tang L, Song D, Song S, Ma W, Xu L, Kuang H, Wu X, Liu L, Chen X, Xu C. Nanoscale; 2016 Jan 28; 8(4):1873-8. PubMed ID: 26732202 [Abstract] [Full Text] [Related]
17. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Pang Y, Wan N, Shi L, Wang C, Sun Z, Xiao R, Wang S. Anal Chim Acta; 2019 Oct 24; 1077():288-296. PubMed ID: 31307721 [Abstract] [Full Text] [Related]
18. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. Taghdisi SM, Danesh NM, Beheshti HR, Ramezani M, Abnous K. Nanoscale; 2016 Feb 14; 8(6):3439-46. PubMed ID: 26791437 [Abstract] [Full Text] [Related]
19. On-site detection of chloramphenicol in fish using SERS-based magnetic aptasensor coupled with a handheld Raman spectrometer. Chen J, Lin H, Cao L, Sui J, Wang L, Fang X, Wang K. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec 15; 303():123211. PubMed ID: 37531680 [Abstract] [Full Text] [Related]
20. Au@Ag core-shell nanoparticles for microRNA-21 determination based on duplex-specific nuclease signal amplification and surface-enhanced Raman scattering. Xu W, Zhao A, Zuo F, Khan R, Hussain HMJ, Chang J. Mikrochim Acta; 2020 Jun 12; 187(7):384. PubMed ID: 32533266 [Abstract] [Full Text] [Related] Page: [Next] [New Search]