These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. Tran EH, Prince EN, Owens T. J Immunol; 2000 Mar 01; 164(5):2759-68. PubMed ID: 10679118 [Abstract] [Full Text] [Related]
26. An Oriental Medicine, Hyungbangpaedok-San Attenuates Motor Paralysis in an Experimental Model of Multiple Sclerosis by Regulating the T Cell Response. Choi JH, Lee MJ, Jang M, Kim EJ, Shim I, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. PLoS One; 2015 Mar 01; 10(10):e0138592. PubMed ID: 26444423 [Abstract] [Full Text] [Related]
27. DAB389IL-2 suppresses autoimmune inflammation in the CNS and inhibits T cell-mediated lysis of glial target cells. Bhopale MK, Hilliard B, Constantinescu CS, Fujioka T, Ventura E, Phillips SM, Rostami A. Exp Mol Pathol; 2014 Feb 01; 96(1):108-17. PubMed ID: 23872438 [Abstract] [Full Text] [Related]
28. p150/95 (CD11c/CD18) expression is required for the development of experimental autoimmune encephalomyelitis. Bullard DC, Hu X, Adams JE, Schoeb TR, Barnum SR. Am J Pathol; 2007 Jun 01; 170(6):2001-8. PubMed ID: 17525267 [Abstract] [Full Text] [Related]
29. Smek1 deficiency exacerbates experimental autoimmune encephalomyelitis by activating proinflammatory microglia and suppressing the IDO1-AhR pathway. Duan RN, Yang CL, Du T, Liu A, Wang AR, Sun WJ, Li X, Li JX, Yan CZ, Liu QJ. J Neuroinflammation; 2021 Jun 28; 18(1):145. PubMed ID: 34183017 [Abstract] [Full Text] [Related]
31. Age-associated changes in rat immune system: lessons learned from experimental autoimmune encephalomyelitis. Djikić J, Nacka-Aleksić M, Pilipović I, Stojić-Vukanić Z, Bufan B, Kosec D, Dimitrijević M, Leposavić G. Exp Gerontol; 2014 Oct 28; 58():179-97. PubMed ID: 25128713 [Abstract] [Full Text] [Related]
32. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW, Jacques FH, Akira S, David S. Glia; 2012 Jul 28; 60(7):1145-59. PubMed ID: 22499213 [Abstract] [Full Text] [Related]
36. The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. Krakowski ML, Owens T. Eur J Immunol; 1997 Nov 28; 27(11):2840-7. PubMed ID: 9394808 [Abstract] [Full Text] [Related]
37. Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Gao H, Danzi MC, Choi CS, Taherian M, Dalby-Hansen C, Ellman DG, Madsen PM, Bixby JL, Lemmon VP, Lambertsen KL, Brambilla R. Cell Rep; 2017 Jan 03; 18(1):198-212. PubMed ID: 28052249 [Abstract] [Full Text] [Related]
38. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Lee MJ, Jang M, Choi J, Lee G, Min HJ, Chung WS, Kim JI, Jee Y, Chae Y, Kim SH, Lee SJ, Cho IH. Mol Neurobiol; 2016 Apr 03; 53(3):1419-1445. PubMed ID: 25579380 [Abstract] [Full Text] [Related]
39. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. Milovanovic M, Volarevic V, Ljujic B, Radosavljevic G, Jovanovic I, Arsenijevic N, Lukic ML. PLoS One; 2012 Apr 03; 7(9):e45225. PubMed ID: 23028861 [Abstract] [Full Text] [Related]