These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
90 related items for PubMed ID: 3018265
21. Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum. Hess ML, Okabe E, Kontos HA. J Mol Cell Cardiol; 1981 Aug; 13(8):767-72. PubMed ID: 6267305 [No Abstract] [Full Text] [Related]
22. Variable Ca2+ transport:phosphoprotein ratios in the early part of the GTP-driven calcium-transport reaction of the sarcoplasmic reticulum. Fassold E, Von Chak D, Hasselbach W. Eur J Biochem; 1981 Jan; 113(3):611-6. PubMed ID: 7215344 [Abstract] [Full Text] [Related]
23. Roles of phosphorylation and nucleotide binding domains in calcium transport by sarcoplasmic reticulum adenosinetriphosphatase. Teruel JA, Inesi G. Biochemistry; 1988 Aug 09; 27(16):5885-90. PubMed ID: 2973347 [Abstract] [Full Text] [Related]
24. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration. Marie V, Silva JE. J Cell Physiol; 1998 Jun 09; 175(3):283-94. PubMed ID: 9572473 [Abstract] [Full Text] [Related]
25. Rate of calcium release and ATP synthesis in sarcoplasmic reticulum vesicles. Sande-Lemos MP, De Meis L. Eur J Biochem; 1988 Jan 15; 171(1-2):273-8. PubMed ID: 2448140 [Abstract] [Full Text] [Related]
26. Occluded bound calcium on the phosphorylated sarcoplasmic transport ATPase. Takisawa H, Makinose M. Nature; 1981 Mar 19; 290(5803):271-3. PubMed ID: 6451810 [Abstract] [Full Text] [Related]
27. Steady state kinetics of the (Ca2+ + Mg2+)-dependent P-nitrophenylphosphatase activity of sarcoplasmic reticulum vessicles. Ribeiro JM, Aragão ES, Vianna AL. An Acad Bras Cienc; 1980 Jun 19; 52(2):403-9. PubMed ID: 6257155 [Abstract] [Full Text] [Related]
28. Determination of coupling ratios of the calcium pump of sarcoplasmic reticulum by pulse methods. Meltzer S, Berman MC. Anal Biochem; 1984 May 01; 138(2):458-64. PubMed ID: 6234821 [Abstract] [Full Text] [Related]
29. [The effect of hypothermia on the Ca2+-pump in sarcoplasmatic reticulum during autolysis of the myocardium]. Brovkovich VM, Iarmysh NV. Ukr Biokhim Zh (1978); 1989 May 01; 61(6):58-63. PubMed ID: 2534332 [Abstract] [Full Text] [Related]
30. ATP-dependent phosphate transport in sarcoplasmic reticulum and reconstituted proteoliposomes. Carley WW, Racker E. Biochim Biophys Acta; 1982 May 19; 680(2):187-93. PubMed ID: 6212081 [Abstract] [Full Text] [Related]
31. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen. Orlowski S, Champeil P. Biochemistry; 1991 Nov 26; 30(47):11331-42. PubMed ID: 1835657 [Abstract] [Full Text] [Related]
36. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum. Jones LR. Biochim Biophys Acta; 1979 Oct 19; 557(1):230-42. PubMed ID: 162038 [Abstract] [Full Text] [Related]
37. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes. Ronzani N, Migala A, Hasselbach W. Eur J Biochem; 1979 Nov 19; 101(2):593-606. PubMed ID: 160316 [Abstract] [Full Text] [Related]
38. Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport. Frank K, Tilgmann C, Shannon TR, Bers DM, Kranias EG. Biochemistry; 2000 Nov 21; 39(46):14176-82. PubMed ID: 11087366 [Abstract] [Full Text] [Related]