These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 3018796
1. Effects of chronic electrode implantation on dopaminergic neurons in vivo. McCown TJ, Napier TC, Breese GR. Pharmacol Biochem Behav; 1986 Jul; 25(1):63-9. PubMed ID: 3018796 [Abstract] [Full Text] [Related]
2. Effects of anesthetics and electrical stimulation on nigrostriatal dopaminergic neurons. McCown TJ, Mueller RA, Breese GR. J Pharmacol Exp Ther; 1983 Mar; 224(3):489-93. PubMed ID: 6827473 [Abstract] [Full Text] [Related]
3. Increase in accumbal dopaminergic transmission correlates with response cost not reward of hypothalamic stimulation. Neill DB, Fenton H, Justice JB. Behav Brain Res; 2002 Dec 02; 137(1-2):129-38. PubMed ID: 12445719 [Abstract] [Full Text] [Related]
4. Behavioral characterization of intracranial self-stimulation from mesolimbic, mesocortical, nigrostriatal, hypothalamic and extra-hypothalamic sites in the non-inbred CD-1 mouse strain. Zacharko RM, Kasian M, Irwin J, Zalcman S, LaLonde G, MacNeil G, Anisman H. Behav Brain Res; 1990 Jan 22; 36(3):251-81. PubMed ID: 2310489 [Abstract] [Full Text] [Related]
5. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat. Fiorino DF, Coury A, Fibiger HC, Phillips AG. Behav Brain Res; 1993 Jun 30; 55(2):131-41. PubMed ID: 7689319 [Abstract] [Full Text] [Related]
6. The role of dopamine in intracranial self-stimulation of the ventral tegmental area. Fibiger HC, LePiane FG, Jakubovic A, Phillips AG. J Neurosci; 1987 Dec 30; 7(12):3888-96. PubMed ID: 3121802 [Abstract] [Full Text] [Related]
7. Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Roth RH, Murrin LC, Walters JR. Eur J Pharmacol; 1976 Mar 30; 36(1):163-71. PubMed ID: 177297 [Abstract] [Full Text] [Related]
8. Modulation of intracranial self-stimulation behaviour by local perfusions of dopamine, noradrenaline and serotonin within the caudate nucleus and nucleus accumbens. Redgrave P. Brain Res; 1978 Oct 27; 155(2):277-95. PubMed ID: 688018 [Abstract] [Full Text] [Related]
9. Self-stimulation at the lateral hypothalamus and locus coeruleus after specific unilateral lesions of the dopamine system. Koob GF, Fray PJ, Iversen SD. Brain Res; 1978 May 05; 146(1):123-40. PubMed ID: 647383 [Abstract] [Full Text] [Related]
10. Increased in vivo tyrosine hydroxylase activity in rat telencephalon produced by self-stimulation of the ventral tegmental area. Phillips AG, Jakubovic A, Fibiger HC. Brain Res; 1987 Jan 27; 402(1):109-16. PubMed ID: 2881597 [Abstract] [Full Text] [Related]
12. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals. el Ganouni S, Forni C, Nieoullon A. Brain Res; 1987 Feb 24; 404(1-2):239-56. PubMed ID: 3494483 [Abstract] [Full Text] [Related]
13. Differential effects of gonadal steroids on dopamine metabolism in mesolimbic and nigro-striatal pathways of male rat brain. Alderson LM, Baum MJ. Brain Res; 1981 Aug 10; 218(1-2):189-206. PubMed ID: 7272735 [Abstract] [Full Text] [Related]
18. Differential effect of self-stimulation on dopamine release and metabolism in the rat medial frontal cortex, nucleus accumbens and striatum studied by in vivo microdialysis. Nakahara D, Fuchikami K, Ozaki N, Iwasaki T, Nagatsu T. Brain Res; 1992 Mar 06; 574(1-2):164-70. PubMed ID: 1638391 [Abstract] [Full Text] [Related]
19. Pharmacological evidence about nigro-striatal inhibition related to intrinsic GABA in the caudate nucleus deprived of dopaminergic synaptic activity. Feltz P. Appl Neurophysiol; 1979 Mar 06; 42(1-2):47-50. PubMed ID: 222207 [No Abstract] [Full Text] [Related]