These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
420 related items for PubMed ID: 30194854
1. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Kong D, Chen Z. Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854 [Abstract] [Full Text] [Related]
2. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. Bao T, Tang P, Kong D, Mao Z, Chen Z. J Chromatogr A; 2016 May 06; 1445():140-8. PubMed ID: 27062718 [Abstract] [Full Text] [Related]
3. [Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography]. Zhao L, Lü W, Niu X, Pan C, Chen H, Chen X. Se Pu; 2020 Sep 08; 38(9):1095-1101. PubMed ID: 34213276 [Abstract] [Full Text] [Related]
4. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. Fu Y, Li Z, Li Q, Hu C, Liu Y, Sun W, Chen Z. J Chromatogr A; 2021 Jul 19; 1649():462239. PubMed ID: 34034110 [Abstract] [Full Text] [Related]
5. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Sun W, Liu Y, Zhou W, Li Z, Chen Z. Talanta; 2021 Aug 01; 230():122330. PubMed ID: 33934787 [Abstract] [Full Text] [Related]
6. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Li Q, Li Z, Fu Y, Clarot I, Boudier A, Chen Z. Analyst; 2021 Oct 25; 146(21):6643-6649. PubMed ID: 34591047 [Abstract] [Full Text] [Related]
7. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. Niu X, Ding S, Wang W, Xu Y, Xu Y, Chen H, Chen X. J Chromatogr A; 2016 Mar 04; 1436():109-17. PubMed ID: 26858115 [Abstract] [Full Text] [Related]
8. One-pot fabrication and evaluation of β-ketoenamine covalent organic frameworks@silica composite microspheres as reversed-phase/hydrophilic interaction mixed-mode stationary phase for high performance liquid chromatography. Xia Y, Wang L, Liu Y, Liu J, Bai Q. J Chromatogr A; 2024 Aug 02; 1728():464998. PubMed ID: 38795423 [Abstract] [Full Text] [Related]
9. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation. Li Z, Liao Z, Hu J, Chen Z. J Chromatogr A; 2023 Apr 12; 1694():463905. PubMed ID: 36881971 [Abstract] [Full Text] [Related]
10. In-situ immobilization of covalent organic frameworks as stationary phase for capillary electrochromatography. Fu Y, Li Z, Hu C, Li Q, Chen Z. J Chromatogr A; 2023 Aug 30; 1705():464205. PubMed ID: 37442070 [Abstract] [Full Text] [Related]
11. [Recent developments in the application of covalent organic frameworks in capillary electrochromatography]. Wang GX, Chen YL, Lü WJ, Chen HL, Chen XG. Se Pu; 2023 Oct 30; 41(10):835-842. PubMed ID: 37875406 [Abstract] [Full Text] [Related]
12. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive. Gao L, Zhao X, Qin S, Dong Q, Hu X, Chu H. Chirality; 2022 Mar 30; 34(3):537-549. PubMed ID: 34997664 [Abstract] [Full Text] [Related]
13. β-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and β-blockers by capillary electrochromatography. Li Y, Lin X, Qin S, Gao L, Tang Y, Liu S, Wang Y. Chirality; 2020 Jul 30; 32(7):1008-1019. PubMed ID: 32329149 [Abstract] [Full Text] [Related]
14. Synthesis of crystalline covalent organic framework as stationary phase for capillary electrochromatography. Li Q, Li Z, Fu Y, Hu C, Chen Z. J Chromatogr A; 2022 Jun 21; 1673():463070. PubMed ID: 35526299 [Abstract] [Full Text] [Related]
15. Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids. Wang X, Hu X, Shao Y, Peng L, Zhang Q, Zhou T, Xiang Y, Ye N. Mikrochim Acta; 2019 Aug 27; 186(9):650. PubMed ID: 31501947 [Abstract] [Full Text] [Related]
16. β-Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Gu L, Guan J, Huang Z, Huo H, Shi S, Zhang D, Yan F. Electrophoresis; 2022 Jul 27; 43(13-14):1446-1454. PubMed ID: 35353923 [Abstract] [Full Text] [Related]
17. Facile synthesis and immobilization of functionalized covalent organic framework-1 for electrochromatographic separation. Bao T, Wang S, Zhang N, Zhang J. J Chromatogr A; 2021 May 24; 1645():462130. PubMed ID: 33848663 [Abstract] [Full Text] [Related]
18. Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. Yu LQ, Yang CX, Yan XP. J Chromatogr A; 2014 May 23; 1343():188-94. PubMed ID: 24767798 [Abstract] [Full Text] [Related]
19. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for capillary electrochromatography. Li Z, Liao Z, Ding X, Hu J, Chen Z. J Chromatogr A; 2024 Feb 08; 1716():464626. PubMed ID: 38232637 [Abstract] [Full Text] [Related]
20. Fluorinated covalent organic frameworks as a stationary phase for separation of fluoroquinolones by capillary electrochromatography. Zong R, Yin H, Xiang Y, Zhang L, Ye N. Mikrochim Acta; 2022 May 28; 189(6):237. PubMed ID: 35643990 [Abstract] [Full Text] [Related] Page: [Next] [New Search]