These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


283 related items for PubMed ID: 30207639

  • 1. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X, Ling EAP, Guan C, Zhang Q, Wu W, Liu P, Zheng N, Zhang D, Lopatin S, Lai Z, Huang KW.
    ChemSusChem; 2018 Oct 24; 11(20):3591-3598. PubMed ID: 30207639
    [Abstract] [Full Text] [Related]

  • 2. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z, Zhang J, Sordakis K, Beller M, Du CX, Laurenczy G, Li Y.
    ChemSusChem; 2018 Jul 11; 11(13):2077-2082. PubMed ID: 29722204
    [Abstract] [Full Text] [Related]

  • 3. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH2CH2PiPr2)2 Pincer Ligand in CO2 Hydrogenation and Formic Acid Dehydrogenation.
    Curley JB, Hert C, Bernskoetter WH, Hazari N, Mercado BQ.
    Inorg Chem; 2022 Jan 10; 61(1):643-656. PubMed ID: 34955015
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z, Xu Q.
    Acc Chem Res; 2017 Jun 20; 50(6):1449-1458. PubMed ID: 28525274
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH, Hazari N.
    Acc Chem Res; 2017 Apr 18; 50(4):1049-1058. PubMed ID: 28306247
    [Abstract] [Full Text] [Related]

  • 9. Hydrogen storage in formic acid amine adducts.
    Boddien A, Gartner F, Mellmann D, Sponholz P, Junge H, Laurenczy G, Beller M.
    Chimia (Aarau); 2011 Apr 18; 65(4):214-8. PubMed ID: 21678764
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Directly Knitted Hierarchical Porous Organometallic Polymer-Based Self-Supported Single-Site Catalyst for CO2 Hydrogenation in Water.
    Mandal T, Kumar A, Panda J, Kumar Dutta T, Choudhury J.
    Angew Chem Int Ed Engl; 2023 Dec 11; 62(50):e202314451. PubMed ID: 37874893
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions.
    Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB.
    ChemSusChem; 2021 Jul 06; 14(13):2655-2681. PubMed ID: 33963668
    [Abstract] [Full Text] [Related]

  • 17. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L, Onishi N, Murata K, Hirose T, Muckerman JT, Fujita E, Himeda Y.
    ChemSusChem; 2017 Mar 22; 10(6):1071-1075. PubMed ID: 27860395
    [Abstract] [Full Text] [Related]

  • 18. Zeolite-Encaged Pd-Mn Nanocatalysts for CO2 Hydrogenation and Formic Acid Dehydrogenation.
    Sun Q, Chen BWJ, Wang N, He Q, Chang A, Yang CM, Asakura H, Tanaka T, Hülsey MJ, Wang CH, Yu J, Yan N.
    Angew Chem Int Ed Engl; 2020 Nov 02; 59(45):20183-20191. PubMed ID: 32770613
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.