These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
290 related items for PubMed ID: 30209216
1. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dörmann P, Gigolashvili T, Turck F, Bucher M. Proc Natl Acad Sci U S A; 2018 Sep 25; 115(39):E9239-E9246. PubMed ID: 30209216 [Abstract] [Full Text] [Related]
6. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Volpe V, Giovannetti M, Sun XG, Fiorilli V, Bonfante P. Plant Cell Environ; 2016 Mar 25; 39(3):660-71. PubMed ID: 26476189 [Abstract] [Full Text] [Related]
7. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. Plant Physiol; 2015 Feb 25; 167(2):545-57. PubMed ID: 25527715 [Abstract] [Full Text] [Related]
8. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M. Plant Physiol; 2015 Mar 25; 167(3):854-71. PubMed ID: 25560877 [Abstract] [Full Text] [Related]
9. The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Brands M, Wewer V, Keymer A, Gutjahr C, Dörmann P. Plant J; 2018 Jul 25; 95(2):219-232. PubMed ID: 29687516 [Abstract] [Full Text] [Related]
10. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. Xue L, Almario J, Fabiańska I, Saridis G, Bucher M. New Phytol; 2019 Oct 25; 224(1):409-420. PubMed ID: 31125425 [Abstract] [Full Text] [Related]
11. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. Lota F, Wegmüller S, Buer B, Sato S, Bräutigam A, Hanf B, Bucher M. Plant J; 2013 Apr 25; 74(2):280-93. PubMed ID: 23452278 [Abstract] [Full Text] [Related]
12. Root starch accumulation in response to arbuscular mycorrhizal colonization differs among Lotus japonicus starch mutants. Gutjahr C, Novero M, Welham T, Wang T, Bonfante P. Planta; 2011 Sep 25; 234(3):639-46. PubMed ID: 21750938 [Abstract] [Full Text] [Related]
13. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. Plant Cell Physiol; 2015 Aug 25; 56(8):1490-511. PubMed ID: 26009592 [Abstract] [Full Text] [Related]
14. A mycorrhiza-specific H+ -ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Liu J, Chen J, Xie K, Tian Y, Yan A, Liu J, Huang Y, Wang S, Zhu Y, Chen A, Xu G. Plant Cell Environ; 2020 Apr 25; 43(4):1069-1083. PubMed ID: 31899547 [Abstract] [Full Text] [Related]
15. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P. New Phytol; 2014 Nov 25; 204(3):609-619. PubMed ID: 25132489 [Abstract] [Full Text] [Related]
16. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis. Vijayakumar V, Liebisch G, Buer B, Xue L, Gerlach N, Blau S, Schmitz J, Bucher M. Plant Cell Environ; 2016 Feb 25; 39(2):393-415. PubMed ID: 26297195 [Abstract] [Full Text] [Related]
17. Lipid transfer from plants to arbuscular mycorrhiza fungi. Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Röpenack-Lahaye EV, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C. Elife; 2017 Jul 20; 6():. PubMed ID: 28726631 [Abstract] [Full Text] [Related]
18. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P. New Phytol; 2009 Jul 20; 182(1):200-212. PubMed ID: 19192192 [Abstract] [Full Text] [Related]
19. Symbiotic phosphate transport in arbuscular mycorrhizas. Karandashov V, Bucher M. Trends Plant Sci; 2005 Jan 20; 10(1):22-9. PubMed ID: 15642520 [Abstract] [Full Text] [Related]
20. Common symbiosis genes CERBERUS and NSP1 provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses in Lotus japonicus. Nagae M, Takeda N, Kawaguchi M. Plant Signal Behav; 2014 Jan 20; 9(3):e28544. PubMed ID: 24705023 [Abstract] [Full Text] [Related] Page: [Next] [New Search]