These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 30212570
1. The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea. Yin Y, Wu S, Chui C, Ma T, Jiang H, Hahn M, Ma Z. PLoS Pathog; 2018 Sep; 14(9):e1007285. PubMed ID: 30212570 [Abstract] [Full Text] [Related]
2. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea. Rascle C, Dieryckx C, Dupuy JW, Muszkieta L, Souibgui E, Droux M, Bruel C, Girard V, Poussereau N. Environ Microbiol Rep; 2018 Oct; 10(5):555-568. PubMed ID: 30066486 [Abstract] [Full Text] [Related]
3. Novel Botrytis cinerea Zn(II)2Cys6 Transcription Factor BcFtg1 Enhances the Virulence of the Gray Mold Fungus by Promoting Organic Acid Secretion and Carbon Source Utilization. Yang S, Sun J, Xue A, Li G, Sun C, Hou J, Qin QM, Zhang M. J Agric Food Chem; 2024 Aug 28; 72(34):18824-18839. PubMed ID: 39140189 [Abstract] [Full Text] [Related]
4. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca2+ signalling pathways. Kilani J, Davanture M, Simon A, Zivy M, Fillinger S. J Proteomics; 2020 Feb 10; 212():103580. PubMed ID: 31733416 [Abstract] [Full Text] [Related]
5. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y, Liu JK, Li GH, Zhang MZ, Zhang YY, Wang YY, Hou J, Yang S, Sun J, Qin QM. Mol Plant Pathol; 2019 May 10; 20(5):731-747. PubMed ID: 31008573 [Abstract] [Full Text] [Related]
6. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea. Yang Q, Yu F, Yin Y, Ma Z. PLoS One; 2013 May 10; 8(4):e61307. PubMed ID: 23585890 [Abstract] [Full Text] [Related]
7. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Yang Q, Jiang J, Mayr C, Hahn M, Ma Z. Environ Microbiol; 2013 Oct 10; 15(10):2696-711. PubMed ID: 23601355 [Abstract] [Full Text] [Related]
8. The Gβ-like protein Bcgbl1 regulates development and pathogenicity of the gray mold Botrytis cinerea via modulating two MAP kinase signaling pathways. Tang J, Sui Z, Li R, Xu Y, Xiang L, Fu S, Wei J, Cai X, Wu M, Zhang J, Chen W, Wei Y, Li G, Yang L. PLoS Pathog; 2023 Dec 10; 19(12):e1011839. PubMed ID: 38048363 [Abstract] [Full Text] [Related]
9. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Yang Q, Yan L, Gu Q, Ma Z. Appl Microbiol Biotechnol; 2012 Oct 10; 96(2):481-92. PubMed ID: 22526788 [Abstract] [Full Text] [Related]
10. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. Schumacher J, Pradier JM, Simon A, Traeger S, Moraga J, Collado IG, Viaud M, Tudzynski B. PLoS One; 2012 Oct 10; 7(10):e47840. PubMed ID: 23118899 [Abstract] [Full Text] [Related]
11. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea. Shao W, Yang Y, Zhang Y, Lv C, Ren W, Chen C. Mol Plant Pathol; 2016 Apr 10; 17(3):438-47. PubMed ID: 26176995 [Abstract] [Full Text] [Related]
12. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. Yang Q, Yin D, Yin Y, Cao Y, Ma Z. Mol Plant Pathol; 2015 Apr 10; 16(3):276-87. PubMed ID: 25130972 [Abstract] [Full Text] [Related]
13. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C, He Y, Zhu P, Chen L, Wang Y, Ni B, Xu L. Mol Plant Microbe Interact; 2015 Oct 10; 28(10):1091-101. PubMed ID: 26035129 [Abstract] [Full Text] [Related]
14. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment. Castillo L, Plaza V, Larrondo LF, Canessa P. Curr Protein Pept Sci; 2017 Oct 10; 18(10):976-989. PubMed ID: 27526927 [Abstract] [Full Text] [Related]
15. The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Liu W, Leroux P, Fillinger S. Fungal Genet Biol; 2008 Jul 10; 45(7):1062-74. PubMed ID: 18495505 [Abstract] [Full Text] [Related]
16. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea. Liu X, Xie J, Fu Y, Jiang D, Chen T, Cheng J. Int J Mol Sci; 2020 Jan 17; 21(2):. PubMed ID: 31963451 [Abstract] [Full Text] [Related]
17. The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea. Ren W, Liu N, Sang C, Shi D, Zhou M, Chen C, Qin Q, Chen W. Appl Environ Microbiol; 2018 Jun 01; 84(11):. PubMed ID: 29572212 [Abstract] [Full Text] [Related]
18. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J, Simon A, Cohrs KC, Traeger S, Porquier A, Dalmais B, Viaud M, Tudzynski B. Mol Plant Microbe Interact; 2015 Jun 01; 28(6):659-74. PubMed ID: 25625818 [Abstract] [Full Text] [Related]
19. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Botrytis cinerea. Sun J, Sun CH, Chang HW, Yang S, Liu Y, Zhang MZ, Hou J, Zhang H, Li GH, Qin QM. Int J Mol Sci; 2021 Feb 08; 22(4):. PubMed ID: 33567582 [Abstract] [Full Text] [Related]
20. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. Hou J, Feng HQ, Chang HW, Liu Y, Li GH, Yang S, Sun CH, Zhang MZ, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin QM. New Phytol; 2020 Jan 08; 225(2):930-947. PubMed ID: 31529514 [Abstract] [Full Text] [Related] Page: [Next] [New Search]