These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 30219980
21. Numerical study of asymmetric flows of red blood cells in capillaries. Sugihara-Seki M, Skalak R. Microvasc Res; 1988 Jul; 36(1):64-74. PubMed ID: 3185304 [Abstract] [Full Text] [Related]
22. Microcontinuum model for pulsatile blood flow through a stenosed tube. Chaturani P, Palanisamy V. Biorheology; 1989 Jul; 26(4):835-46. PubMed ID: 2611375 [Abstract] [Full Text] [Related]
23. Numerical investigation on red blood cell flow based on unstructured grid. Li G, Chen B, Wang X. Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3647. PubMed ID: 36166288 [Abstract] [Full Text] [Related]
24. [The Fahraeus and Fahraeus-Lindqvist effects: experimental testing of theoretical models]. Azelvandre F, Oiknine C. Biorheology; 1976 Dec; 13(6):325-35. PubMed ID: 1009238 [No Abstract] [Full Text] [Related]
25. Robin Fåhraeus: evolution of his concepts in cardiovascular physiology. Goldsmith HL, Cokelet GR, Gaehtgens P. Am J Physiol; 1989 Sep; 257(3 Pt 2):H1005-15. PubMed ID: 2675631 [Abstract] [Full Text] [Related]
26. Rheological properties of blood and their possible role in the circulation and development of intracranial hemorrhage in preterm infants. Linderkamp O, Betke K. Klin Padiatr; 1985 Sep; 197(4):319-21. PubMed ID: 4046488 [Abstract] [Full Text] [Related]
27. Fåhraeus and Fåhreaus-Lindqvist effects for neonatal and adult red blood cell suspensions. McKay CB, Linderkamp O, Meiselman HJ. Pediatr Res; 1993 Oct; 34(4):538-43. PubMed ID: 8255690 [Abstract] [Full Text] [Related]
28. Pulsatile flow in a coronary artery using multiphase kinetic theory. Huang J, Lyczkowski RW, Gidaspow D. J Biomech; 2009 Apr 16; 42(6):743-54. PubMed ID: 19278682 [Abstract] [Full Text] [Related]
29. Hematocrit fluctuations within capillary tubes and estimation of Fåhraeus effect. Secomb TW, Pries AR, Gaehtgens P. Int J Microcirc Clin Exp; 1987 Apr 16; 5(4):335-45. PubMed ID: 3557819 [Abstract] [Full Text] [Related]
31. The bulk rheology of close-packed red blood cells in shear flow. Secomb TW, Chien S, Jan KM, Skalak R. Biorheology; 1983 Apr 16; 20(3):295-309. PubMed ID: 6626714 [Abstract] [Full Text] [Related]
32. Viscosity reduction of red blood cells from preterm and full-term neonates and adults in narrow tubes (Fahraeus-Lindqvist effect). Zilow EP, Linderkamp O. Pediatr Res; 1989 Jun 16; 25(6):595-9. PubMed ID: 2740150 [Abstract] [Full Text] [Related]
36. Microhemodynamics of blood flow in narrow glass capillaries of 9 to 20 micrometers; the Fahraeus effect. Ohshima N, Sato M, Oda N. Biorheology; 1988 Jun 16; 25(1-2):339-48. PubMed ID: 3196831 [Abstract] [Full Text] [Related]
37. Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network. Reinhart WH, Piety NZ, Shevkoplyas SS. Microcirculation; 2017 Nov 16; 24(8):. PubMed ID: 28801994 [Abstract] [Full Text] [Related]
38. Flow of Red Blood Cells in Stenosed Microvessels. Vahidkhah K, Balogh P, Bagchi P. Sci Rep; 2016 Jun 20; 6():28194. PubMed ID: 27319318 [Abstract] [Full Text] [Related]