These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 30222351

  • 21. Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools.
    Rasinger JD, Marbaix H, Dieu M, Fumière O, Mauro S, Palmblad M, Raes M, Berntssen MHG.
    J Proteomics; 2016 Sep 16; 147():125-131. PubMed ID: 27268957
    [Abstract] [Full Text] [Related]

  • 22. Quantification of malachite green in fish feed utilising liquid chromatography-tandem mass spectrometry with a monolithic column.
    Abro K, Mahesar SA, Iqbal S, Perveen S.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014 Sep 16; 31(5):827-32. PubMed ID: 24524279
    [Abstract] [Full Text] [Related]

  • 23. Inter-laboratory validation study of two immunochemical methods for detection of processed ruminant proteins.
    van Raamsdonk LW, Margry RJ, van Kaathoven RG, Bremer MG.
    Food Chem; 2015 Oct 15; 185():333-9. PubMed ID: 25952876
    [Abstract] [Full Text] [Related]

  • 24. Preliminary Feed Sedimentation Step for the Sensitive and Specific Detection of Processed Animal Proteins by Mass Spectrometry-Based Proteomics.
    Lecrenier MC, Plasman L, Cordonnier A, Baeten V.
    J Agric Food Chem; 2023 Oct 25; 71(42):15774-15784. PubMed ID: 37824504
    [Abstract] [Full Text] [Related]

  • 25. The BSE risk of processing meat and bone meal in nonruminant feed: a quantitative assessment for the Netherlands.
    de Vos CJ, Heres L.
    Risk Anal; 2009 Apr 25; 29(4):541-57. PubMed ID: 19144064
    [Abstract] [Full Text] [Related]

  • 26. A quantitative assessment of the risk of exposure to bovine spongiform encephalopathy via meat-and-bone meal in Japan.
    Yamamoto T, Tsutsui T, Nonaka T, Kobayashi S, Nishiguchi A, Yamane I.
    Prev Vet Med; 2006 Aug 17; 75(3-4):221-38. PubMed ID: 16712985
    [Abstract] [Full Text] [Related]

  • 27. New approach for the quantification of processed animal proteins in feed using light microscopy.
    Veys P, Baeten V.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Jul 17; 27(7):926-34. PubMed ID: 20432096
    [Abstract] [Full Text] [Related]

  • 28. Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study.
    Boix A, Fernández Pierna JA, von Holst C, Baeten V.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012 Jul 17; 29(12):1872-80. PubMed ID: 22966791
    [Abstract] [Full Text] [Related]

  • 29. Development of primers for detection of heat-treated cetacean materials in porcine meat and bone meal.
    Shinoda N, Yoshida T, Kusama T, Takagi M, Onodera T, Sugiura K.
    J Food Prot; 2009 Jul 17; 72(7):1496-9. PubMed ID: 19681277
    [Abstract] [Full Text] [Related]

  • 30. Detection of ruminant meat and bone meals in animal feed by real-time polymerase chain reaction: result of an interlaboratory study.
    Prado M, Berben G, Fumière O, van Duijn G, Mensinga-Kruize J, Reaney S, Boix A, von Holst C.
    J Agric Food Chem; 2007 Sep 05; 55(18):7495-501. PubMed ID: 17725317
    [Abstract] [Full Text] [Related]

  • 31. Novel method for detecting bovine immunoglobulin G in dried porcine plasma as an indicator of bovine plasma contamination.
    Newgard JR, Rouse GC, McVicker JK.
    J Agric Food Chem; 2002 May 22; 50(11):3094-7. PubMed ID: 12009968
    [Abstract] [Full Text] [Related]

  • 32. Chemical composition, protein quality, palatability, and digestibility of alternative protein sources for dogs.
    Dust JM, Grieshop CM, Parsons CM, Karr-Lilienthal LK, Schasteen CS, Quigley JD, Merchen NR, Fahey GC.
    J Anim Sci; 2005 Oct 22; 83(10):2414-22. PubMed ID: 16160054
    [Abstract] [Full Text] [Related]

  • 33. Inorganic Characterization of Feeds Based on Processed Animal Protein Feeds.
    Inaudi P, Mercurio LM, Marchis D, Bosusco A, Malandrino M, Abollino O, Favilli L, Bertinetti S, Giacomino A.
    Molecules; 2024 Aug 14; 29(16):. PubMed ID: 39202924
    [Abstract] [Full Text] [Related]

  • 34. Identification of species-specific DNA in feedstuffs.
    Krcmar P, Rencova E.
    J Agric Food Chem; 2003 Dec 17; 51(26):7655-8. PubMed ID: 14664524
    [Abstract] [Full Text] [Related]

  • 35. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food.
    von Bargen C, Brockmeyer J, Humpf HU.
    J Agric Food Chem; 2014 Oct 01; 62(39):9428-35. PubMed ID: 25188355
    [Abstract] [Full Text] [Related]

  • 36. Sensitive Flow-through Immunoassay for Rapid Multiplex Determination of Cereal-borne Mycotoxins in Feed and Feed Ingredients.
    Beloglazova NV, Graniczkowska K, Njumbe Ediage E, Averkieva O, De Saeger S.
    J Agric Food Chem; 2017 Aug 23; 65(33):7131-7137. PubMed ID: 28013544
    [Abstract] [Full Text] [Related]

  • 37. Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors.
    Zou T, He P, Yasen A, Li Z.
    Food Chem; 2013 Jun 01; 138(2-3):1742-8. PubMed ID: 23411306
    [Abstract] [Full Text] [Related]

  • 38. Determination of ionophore coccidiostats in feedingstuffs by liquid chromatography-tandem mass spectrometry Part I. Application to targeted feed.
    Vincent U, Chedin M, Yasar S, von Holst C.
    J Pharm Biomed Anal; 2008 Aug 05; 47(4-5):750-7. PubMed ID: 18440174
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.