These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 30228182

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity.
    Wang L, Wagner LE, Alzayady KJ, Yule DI.
    J Biol Chem; 2017 Jul 14; 292(28):11714-11726. PubMed ID: 28526746
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction.
    Bultynck G, Szlufcik K, Kasri NN, Assefa Z, Callewaert G, Missiaen L, Parys JB, De Smedt H.
    Biochem J; 2004 Jul 01; 381(Pt 1):87-96. PubMed ID: 15015936
    [Abstract] [Full Text] [Related]

  • 9. Unique Regulatory Properties of Heterotetrameric Inositol 1,4,5-Trisphosphate Receptors Revealed by Studying Concatenated Receptor Constructs.
    Chandrasekhar R, Alzayady KJ, Wagner LE, Yule DI.
    J Biol Chem; 2016 Mar 04; 291(10):4846-60. PubMed ID: 26755721
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Modulation of inositol 1,4,5-trisphosphate binding to the various inositol 1,4,5-trisphosphate receptor isoforms by thimerosal and cyclic ADP-ribose.
    Vanlingen S, Sipma H, De Smet P, Callewaert G, Missiaen L, De Smedt H, Parys JB.
    Biochem Pharmacol; 2001 Apr 01; 61(7):803-9. PubMed ID: 11274965
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Effects of redox potential and Ca2+ on the inositol 1,4,5-trisphosphate receptor L3-1 loop region: implications for receptor regulation.
    Kang S, Kang J, Kwon H, Frueh D, Yoo SH, Wagner G, Park S.
    J Biol Chem; 2008 Sep 12; 283(37):25567-25575. PubMed ID: 18635540
    [Abstract] [Full Text] [Related]

  • 16. Pathophysiological consequences of isoform-specific IP3 receptor mutations.
    Kerkhofs M, Seitaj B, Ivanova H, Monaco G, Bultynck G, Parys JB.
    Biochim Biophys Acta Mol Cell Res; 2018 Nov 12; 1865(11 Pt B):1707-1717. PubMed ID: 29906486
    [Abstract] [Full Text] [Related]

  • 17. Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias.
    Tada M, Nishizawa M, Onodera O.
    Neurochem Int; 2016 Mar 12; 94():1-8. PubMed ID: 26827887
    [Abstract] [Full Text] [Related]

  • 18. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release.
    Hedgepeth SC, Garcia MI, Wagner LE, Rodriguez AM, Chintapalli SV, Snyder RR, Hankins GD, Henderson BR, Brodie KM, Yule DI, van Rossum DB, Boehning D.
    J Biol Chem; 2015 Mar 13; 290(11):7304-13. PubMed ID: 25645916
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The IP3 receptor/Ca2+ channel and its cellular function.
    Mikoshiba K.
    Biochem Soc Symp; 2007 Mar 13; (74):9-22. PubMed ID: 17233576
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.