These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


348 related items for PubMed ID: 30228194

  • 1. A Quantitative Chemical Proteomic Strategy for Profiling Phosphoprotein Phosphatases from Yeast to Humans.
    Lyons SP, Jenkins NP, Nasa I, Choy MS, Adamo ME, Page R, Peti W, Moorhead GB, Kettenbach AN.
    Mol Cell Proteomics; 2018 Dec; 17(12):2448-2461. PubMed ID: 30228194
    [Abstract] [Full Text] [Related]

  • 2. Affinity-based profiling of endogenous phosphoprotein phosphatases by mass spectrometry.
    Brauer BL, Wiredu K, Mitchell S, Moorhead GB, Gerber SA, Kettenbach AN.
    Nat Protoc; 2021 Oct; 16(10):4919-4943. PubMed ID: 34518704
    [Abstract] [Full Text] [Related]

  • 3. Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation.
    Lyons SP, Greiner EC, Cressey LE, Adamo ME, Kettenbach AN.
    Sci Rep; 2021 Nov 29; 11(1):23031. PubMed ID: 34845248
    [Abstract] [Full Text] [Related]

  • 4. Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family (PP2A(C), PP4(C), and PP6(C)) and analysis of the interaction of PP2A(C) with alpha4 protein.
    Kloeker S, Reed R, McConnell JL, Chang D, Tran K, Westphal RS, Law BK, Colbran RJ, Kamoun M, Campbell KS, Wadzinski BE.
    Protein Expr Purif; 2003 Sep 29; 31(1):19-33. PubMed ID: 12963337
    [Abstract] [Full Text] [Related]

  • 5. A Mass Spectrometry-Based Approach to Identify Phosphoprotein Phosphatases and their Interactors.
    Smolen KA, Kettenbach AN.
    J Vis Exp; 2022 Apr 29; (182):. PubMed ID: 35575520
    [Abstract] [Full Text] [Related]

  • 6. Quantitative kinase and phosphatase profiling reveal that CDK1 phosphorylates PP2Ac to promote mitotic entry.
    Nasa I, Cressey LE, Kruse T, Hertz EPT, Gui J, Graves LM, Nilsson J, Kettenbach AN.
    Sci Signal; 2020 Sep 08; 13(648):. PubMed ID: 32900880
    [Abstract] [Full Text] [Related]

  • 7. Inducible Protein Degradation as a Strategy to Identify Phosphoprotein Phosphatase 6 Substrates in RAS-Mutant Colorectal Cancer Cells.
    Mariano NC, Rusin SF, Nasa I, Kettenbach AN.
    Mol Cell Proteomics; 2023 Aug 08; 22(8):100614. PubMed ID: 37392812
    [Abstract] [Full Text] [Related]

  • 8. Serine/threonine phosphatases and aquaporin-2 regulation in renal collecting duct.
    LeMaire SM, Raghuram V, Grady CR, Pickering CM, Chou CL, Umejiego EN, Knepper MA.
    Am J Physiol Renal Physiol; 2017 Jan 01; 312(1):F84-F95. PubMed ID: 27784696
    [Abstract] [Full Text] [Related]

  • 9. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily.
    Nasa I, Kettenbach AN.
    Biochem Soc Trans; 2020 Oct 30; 48(5):2015-2027. PubMed ID: 33125487
    [Abstract] [Full Text] [Related]

  • 10. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines.
    Uhrig RG, Labandera AM, Moorhead GB.
    Trends Plant Sci; 2013 Sep 30; 18(9):505-13. PubMed ID: 23790269
    [Abstract] [Full Text] [Related]

  • 11. Leucine Carboxyl Methyltransferase 1 (LCMT-1) Methylates Protein Phosphatase 4 (PP4) and Protein Phosphatase 6 (PP6) and Differentially Regulates the Stable Formation of Different PP4 Holoenzymes.
    Hwang J, Lee JA, Pallas DC.
    J Biol Chem; 2016 Sep 30; 291(40):21008-21019. PubMed ID: 27507813
    [Abstract] [Full Text] [Related]

  • 12. Substrate and phosphorylation site selection by phosphoprotein phosphatases.
    Nguyen H, Kettenbach AN.
    Trends Biochem Sci; 2023 Aug 30; 48(8):713-725. PubMed ID: 37173206
    [Abstract] [Full Text] [Related]

  • 13. Okadaic acid and microcystin insensitive PPP-family phosphatases may represent novel biotechnology targets.
    Uhrig RG, Moorhead GB.
    Plant Signal Behav; 2011 Dec 30; 6(12):2057-9. PubMed ID: 22112445
    [Abstract] [Full Text] [Related]

  • 14. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation.
    Liu F, Grundke-Iqbal I, Iqbal K, Gong CX.
    Eur J Neurosci; 2005 Oct 30; 22(8):1942-50. PubMed ID: 16262633
    [Abstract] [Full Text] [Related]

  • 15. Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases.
    Honkanen RE, Codispoti BA, Tse K, Boynton AL, Honkanan RE.
    Toxicon; 1994 Mar 30; 32(3):339-50. PubMed ID: 8016855
    [Abstract] [Full Text] [Related]

  • 16. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues.
    Lillo C, Kataya AR, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM.
    Plant Cell Environ; 2014 Dec 30; 37(12):2631-48. PubMed ID: 24810976
    [Abstract] [Full Text] [Related]

  • 17. The alpha4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A.
    Prickett TD, Brautigan DL.
    J Biol Chem; 2006 Oct 13; 281(41):30503-11. PubMed ID: 16895907
    [Abstract] [Full Text] [Related]

  • 18. Overlapping binding sites in protein phosphatase 2A for association with regulatory A and alpha-4 (mTap42) subunits.
    Prickett TD, Brautigan DL.
    J Biol Chem; 2004 Sep 10; 279(37):38912-20. PubMed ID: 15252037
    [Abstract] [Full Text] [Related]

  • 19. Role of phosphoprotein phosphatases in the corpus luteum: I identification and characterisation of serine/threonine phosphoprotein phosphatases in isolated rat luteal cells.
    Ford SL, Abayasekara DR, Persaud SJ, Jones PM.
    J Endocrinol; 1996 Aug 10; 150(2):205-11. PubMed ID: 8869587
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.