These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


955 related items for PubMed ID: 30232771

  • 1. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.).
    Ding Y, Jian H, Wang T, Di F, Wang J, Li J, Liu L.
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771
    [Abstract] [Full Text] [Related]

  • 2. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus).
    Zhang XD, Meng JG, Zhao KX, Chen X, Yang ZM.
    Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721
    [Abstract] [Full Text] [Related]

  • 3. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus.
    Fu Y, Mason AS, Zhang Y, Lin B, Xiao M, Fu D, Yu H.
    BMC Plant Biol; 2019 Dec 19; 19(1):570. PubMed ID: 31856702
    [Abstract] [Full Text] [Related]

  • 4. Shoot base responds to root-applied glutathione and functions as a critical region to inhibit cadmium translocation from the roots to shoots in oilseed rape (Brassica napus).
    Li JS, Suzui N, Nakai Y, Yin YG, Ishii S, Fujimaki S, Kawachi N, Rai H, Matsumoto T, Sato-Izawa K, Ohkama-Ohtsu N, Nakamura SI.
    Plant Sci; 2021 Apr 19; 305():110822. PubMed ID: 33691958
    [Abstract] [Full Text] [Related]

  • 5. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus.
    Meng JG, Zhang XD, Tan SK, Zhao KX, Yang ZM.
    Biometals; 2017 Dec 19; 30(6):917-931. PubMed ID: 28993932
    [Abstract] [Full Text] [Related]

  • 6. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress.
    Wu Z, Zhao X, Sun X, Tan Q, Tang Y, Nie Z, Qu C, Chen Z, Hu C.
    Chemosphere; 2015 Nov 19; 138():526-36. PubMed ID: 26207887
    [Abstract] [Full Text] [Related]

  • 7. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress.
    Tan X, Long W, Zeng L, Ding X, Cheng Y, Zhang X, Zou X.
    Int J Mol Sci; 2019 Oct 28; 20(21):. PubMed ID: 31661818
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Ultrasonic seed treatment improved cadmium (Cd) tolerance in Brassica napus L.
    Rao G, Huang S, Ashraf U, Mo Z, Duan M, Pan S, Tang X.
    Ecotoxicol Environ Saf; 2019 Dec 15; 185():109659. PubMed ID: 31541946
    [Abstract] [Full Text] [Related]

  • 10. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione.
    Gill RA, Ali B, Cui P, Shen E, Farooq MA, Islam F, Ali S, Mao B, Zhou W.
    BMC Genomics; 2016 Nov 07; 17(1):885. PubMed ID: 27821044
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Comparative Transcriptome Analysis of the Molecular Mechanism of the Hairy Roots of Brassica campestris L. in Response to Cadmium Stress.
    Sun Y, Lu Q, Cao Y, Wang M, Cheng X, Yan Q.
    Int J Mol Sci; 2019 Dec 26; 21(1):. PubMed ID: 31888010
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa).
    Vuorinen AL, Kalpio M, Linderborg KM, Kortesniemi M, Lehto K, Niemi J, Yang B, Kallio HP.
    Food Chem; 2014 Feb 15; 145():664-73. PubMed ID: 24128529
    [Abstract] [Full Text] [Related]

  • 15. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.).
    Zhou H, Xiao X, Asjad A, Han D, Zheng W, Xiao G, Huang Y, Zhou Q.
    BMC Plant Biol; 2022 Mar 21; 22(1):130. PubMed ID: 35313826
    [Abstract] [Full Text] [Related]

  • 16. RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight.
    Geng X, Dong N, Wang Y, Li G, Wang L, Guo X, Li J, Wen Z, Wei W.
    PLoS One; 2018 Mar 21; 13(1):e0191297. PubMed ID: 29381708
    [Abstract] [Full Text] [Related]

  • 17. Can Selenium and Molybdenum Restrain Cadmium Toxicity to Pollen Grains in Brassica napus?
    Ismael MA, Elyamine AM, Zhao YY, Moussa MG, Rana MS, Afzal J, Imran M, Zhao XH, Hu CX.
    Int J Mol Sci; 2018 Jul 24; 19(8):. PubMed ID: 30042365
    [Abstract] [Full Text] [Related]

  • 18. miR395 is involved in detoxification of cadmium in Brassica napus.
    Zhang LW, Song JB, Shu XX, Zhang Y, Yang ZM.
    J Hazard Mater; 2013 Apr 15; 250-251():204-11. PubMed ID: 23454459
    [Abstract] [Full Text] [Related]

  • 19. Integrated ionomic and transcriptomic dissection reveals the core transporter genes responsive to varying cadmium abundances in allotetraploid rapeseed.
    Zhou T, Yue CP, Zhang TY, Liu Y, Huang JY, Hua YP.
    BMC Plant Biol; 2021 Aug 13; 21(1):372. PubMed ID: 34388971
    [Abstract] [Full Text] [Related]

  • 20. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium.
    Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P.
    J Hazard Mater; 2023 Sep 05; 457():131862. PubMed ID: 37329597
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 48.