These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
258 related items for PubMed ID: 3023298
1. Transport of trehalose in Salmonella typhimurium. Postma PW, Keizer HG, Koolwijk P. J Bacteriol; 1986 Dec; 168(3):1107-11. PubMed ID: 3023298 [Abstract] [Full Text] [Related]
2. Regulation of methyl beta-galactoside permease activity in pts and crr mutants of Salmonella typhimurium. Postma PW, Schuitema A, Kwa C. Mol Gen Genet; 1981 Dec; 181(4):448-53. PubMed ID: 6267419 [Abstract] [Full Text] [Related]
3. Transport and metabolism of trehalose in Escherichia coli and Salmonella typhimurium. Maréchal LR. Arch Microbiol; 1984 Jan; 137(1):70-3. PubMed ID: 6370169 [Abstract] [Full Text] [Related]
4. Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. Stock JB, Waygood EB, Meadow ND, Postma PW, Roseman S. J Biol Chem; 1982 Dec 10; 257(23):14543-52. PubMed ID: 6292227 [Abstract] [Full Text] [Related]
5. Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. Postma PW. J Bacteriol; 1981 Aug 10; 147(2):382-9. PubMed ID: 6267008 [Abstract] [Full Text] [Related]
6. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions. Ruijter GJ, Postma PW, van Dam K. J Bacteriol; 1990 Sep 10; 172(9):4783-9. PubMed ID: 2203730 [Abstract] [Full Text] [Related]
10. Interactions in vivo between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and the glycerol and maltose uptake systems of Salmonella typhimurium. Nelson SO, Postma PW. Eur J Biochem; 1984 Feb 15; 139(1):29-34. PubMed ID: 6365546 [Abstract] [Full Text] [Related]
13. Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis. Morabbi Heravi K, Altenbuchner J. J Bacteriol; 2018 Oct 01; 200(19):. PubMed ID: 30038046 [Abstract] [Full Text] [Related]
14. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA, Chin AM, Nierva CT, Feucht BU, Cao YW, Xu YF, Sutrina SL, Saier MH. J Bacteriol; 1990 Sep 01; 172(9):5459-69. PubMed ID: 2203752 [Abstract] [Full Text] [Related]
15. Salmonella utilizes D-glucosaminate via a mannose family phosphotransferase system permease and associated enzymes. Miller KA, Phillips RS, Mrázek J, Hoover TR. J Bacteriol; 2013 Sep 01; 195(18):4057-66. PubMed ID: 23836865 [Abstract] [Full Text] [Related]
16. Regulation of cyclic AMP synthesis by enzyme IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system in crp strains of Salmonella typhimurium. den Blaauwen JL, Postma PW. J Bacteriol; 1985 Oct 01; 164(1):477-8. PubMed ID: 2995321 [Abstract] [Full Text] [Related]
20. Evidence against direct involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling. Tribhuwan RC, Johnson MS, Taylor BL. J Bacteriol; 1986 Nov 01; 168(2):624-30. PubMed ID: 3023283 [Abstract] [Full Text] [Related] Page: [Next] [New Search]