These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 302335
1. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution. Nagel W. J Physiol; 1977 Aug; 269(3):777-96. PubMed ID: 302335 [Abstract] [Full Text] [Related]
2. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. Fuchs W, Larsen EH, Lindemann B. J Physiol; 1977 May; 267(1):137-66. PubMed ID: 301566 [Abstract] [Full Text] [Related]
3. Chloride dependence of active sodium transport in frog skin: the role of intercellular spaces. Ferreira KT, Hill BS. J Physiol; 1978 Oct; 283():283-305. PubMed ID: 102765 [Abstract] [Full Text] [Related]
4. Sodium dependency of active chloride transport across isolated fish skin (Gillichthys mirabilis). Marshall WS. J Physiol; 1981 Oct; 319():165-78. PubMed ID: 7320911 [Abstract] [Full Text] [Related]
5. Influence of lithium upon the intracellular potential of frog skin epithelium. Nagel W. J Membr Biol; 1977 Dec 15; 37(3-4):347-59. PubMed ID: 304486 [Abstract] [Full Text] [Related]
6. Active transport and exchange diffusion of Cl across the isolated skin of Rana pipiens. Drewnowska K, Biber TU. Am J Physiol; 1985 Sep 15; 249(3 Pt 2):F424-31. PubMed ID: 3876034 [Abstract] [Full Text] [Related]
7. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin. Nagel W. J Membr Biol; 1978 Sep 18; 42(2):99-122. PubMed ID: 309008 [Abstract] [Full Text] [Related]
8. Correlation between transepithelial Na+ transport and transepithelial water movement across isolated frog skin (Rana esculenta). Nielsen R. J Membr Biol; 1997 Sep 01; 159(1):61-9. PubMed ID: 9309211 [Abstract] [Full Text] [Related]
9. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda). Costa PM, Fernandes PL, Ferreira HG, Ferreira KT, Giraldez F. J Physiol; 1987 Dec 01; 393():1-17. PubMed ID: 2451735 [Abstract] [Full Text] [Related]
10. Na and K movements across the membranes of frog skin epithelia associated with transient current changes. Leblanc G, Morel F. Pflugers Arch; 1975 Jul 21; 358(2):159-77. PubMed ID: 1081679 [Abstract] [Full Text] [Related]
11. The intracellular electrical potential profile of the frog skin epithelium. Nagel W. Pflugers Arch; 1976 Sep 30; 365(2-3):135-43. PubMed ID: 1086460 [Abstract] [Full Text] [Related]
12. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models. Helman SI. Fed Proc; 1979 Dec 30; 38(13):2743-50. PubMed ID: 510562 [Abstract] [Full Text] [Related]
13. Rheogenic sodium transport in a tight epithelium, the amphibian skin. Nagel W. J Physiol; 1980 May 30; 302():281-95. PubMed ID: 6774086 [Abstract] [Full Text] [Related]
14. Ouabain on active transepithelial sodium transport in frog skin: studies with microelectrodes. Helman SI, Nagel W, Fisher RS. J Gen Physiol; 1979 Jul 30; 74(1):105-27. PubMed ID: 314494 [Abstract] [Full Text] [Related]
15. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. Degnan KJ, Karnaky KJ, Zadunaisky JA. J Physiol; 1977 Sep 30; 271(1):155-91. PubMed ID: 915831 [Abstract] [Full Text] [Related]
16. Intracellular electrolyte concentrations in the frog skin epithelium: effect of vasopressin and dependence on the Na concentration in the bathing media. Rick R, Roloff C, Dörge A, Beck FX, Thurau K. J Membr Biol; 1984 Sep 30; 78(2):129-45. PubMed ID: 6325700 [Abstract] [Full Text] [Related]
17. Transient current changes and Na compartimentalization in frog skin epithelium. Morel F, Leblanc G. Pflugers Arch; 1975 Jul 21; 358(2):135-57. PubMed ID: 1081678 [Abstract] [Full Text] [Related]
18. Active sodium transport and the electrophysiology of rabbit colon. Schultz SG, Frizzell RA, Nellans HN. J Membr Biol; 1977 May 12; 33(3-4):351-84. PubMed ID: 864694 [Abstract] [Full Text] [Related]
19. Na+-dependent H+ and Cl- transport in in vitro frog gastric mucosa. Machen TE, McLennan WL. Am J Physiol; 1980 May 12; 238(5):G403-13. PubMed ID: 6966473 [Abstract] [Full Text] [Related]
20. Na transport stimulation by novobiocin: intracellular ion concentrations and membrane potential. Rick R, Beck FX, Dörge A, Sesselmann E, Thurau K. Pflugers Arch; 1988 May 12; 411(5):505-13. PubMed ID: 3260372 [Abstract] [Full Text] [Related] Page: [Next] [New Search]