These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


420 related items for PubMed ID: 30236952

  • 1. Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates.
    Bender JK, Fleige C, Lange D, Klare I, Werner G.
    Int J Antimicrob Agents; 2018 Dec; 52(6):819-827. PubMed ID: 30236952
    [Abstract] [Full Text] [Related]

  • 2. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.
    Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Feßler AT, Wu C, Yu H, Deng X, Xia X, Shen J.
    J Antimicrob Chemother; 2015 Aug; 70(8):2182-90. PubMed ID: 25977397
    [Abstract] [Full Text] [Related]

  • 3. Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.
    Kang ZZ, Lei CW, Kong LH, Wang YL, Ye XL, Ma BH, Wang XC, Li C, Zhang Y, Wang HN.
    J Glob Antimicrob Resist; 2019 Dec; 19():333-337. PubMed ID: 31136832
    [Abstract] [Full Text] [Related]

  • 4. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance.
    Gawryszewska I, Żabicka D, Hryniewicz W, Sadowy E.
    Eur J Clin Microbiol Infect Dis; 2017 Jul; 36(7):1279-1286. PubMed ID: 28197728
    [Abstract] [Full Text] [Related]

  • 5. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program.
    Deshpande LM, Castanheira M, Flamm RK, Mendes RE.
    J Antimicrob Chemother; 2018 Sep 01; 73(9):2314-2322. PubMed ID: 29878213
    [Abstract] [Full Text] [Related]

  • 6. Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses.
    Na SH, Moon DC, Choi MJ, Oh SJ, Jung DY, Kang HY, Hyun BH, Lim SK.
    Int J Food Microbiol; 2019 Mar 16; 293():53-59. PubMed ID: 30640000
    [Abstract] [Full Text] [Related]

  • 7. Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes.
    Moure Z, Lara N, Marín M, Sola-Campoy PJ, Bautista V, Gómez-Bertomeu F, Gómez-Dominguez C, Pérez-Vázquez M, Aracil B, Campos J, Cercenado E, Oteo-Iglesias J, Spanish Linezolid-Resistant Enterococci Collaborating Group.
    Int J Antimicrob Agents; 2020 Jun 16; 55(6):105977. PubMed ID: 32330583
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin.
    He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Feßler AT, Zhang R, Wu C, Shen J, Wang Y.
    J Antimicrob Chemother; 2016 Jun 16; 71(6):1466-73. PubMed ID: 26903276
    [Abstract] [Full Text] [Related]

  • 10. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses.
    Tamang MD, Moon DC, Kim SR, Kang HY, Lee K, Nam HM, Jang GC, Lee HS, Jung SC, Lim SK.
    Vet Microbiol; 2017 Mar 16; 201():252-256. PubMed ID: 28284617
    [Abstract] [Full Text] [Related]

  • 11. Faecal carriage of optrA-positive enterococci in asymptomatic healthy humans in Hangzhou, China.
    Cai J, Schwarz S, Chi D, Wang Z, Zhang R, Wang Y.
    Clin Microbiol Infect; 2019 May 16; 25(5):630.e1-630.e6. PubMed ID: 30076974
    [Abstract] [Full Text] [Related]

  • 12. Co-existence of the oxazolidinone resistance genes cfr and optrA on two transferable multi-resistance plasmids in one Enterococcus faecalis isolate from swine.
    Chen L, Han D, Tang Z, Hao J, Xiong W, Zeng Z.
    Int J Antimicrob Agents; 2020 Jul 16; 56(1):105993. PubMed ID: 32335280
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters.
    Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A, Peixe L.
    J Antimicrob Chemother; 2017 Dec 01; 72(12):3245-3251. PubMed ID: 29029072
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China.
    Zhang Y, Dong G, Li J, Chen L, Liu H, Bi W, Lu H, Zhou T.
    Eur J Clin Microbiol Infect Dis; 2018 Aug 01; 37(8):1441-1448. PubMed ID: 29909468
    [Abstract] [Full Text] [Related]

  • 18. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms.
    Chen H, Wu W, Ni M, Liu Y, Zhang J, Xia F, He W, Wang Q, Wang Z, Cao B, Wang H.
    Int J Antimicrob Agents; 2013 Oct 01; 42(4):317-21. PubMed ID: 23880167
    [Abstract] [Full Text] [Related]

  • 19. Effect of tedizolid on clinical Enterococcus isolates: in vitro activity, distribution of virulence factor, resistance genes and multilocus sequence typing.
    Bai B, Hu K, Li H, Yao W, Li D, Chen Z, Cheng H, Zheng J, Pan W, Deng M, Liu X, Lin Z, Deng Q, Yu Z.
    FEMS Microbiol Lett; 2018 Feb 01; 365(3):. PubMed ID: 29390078
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.