These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cellular phosphate metabolism in patients receiving bisphosphonate therapy. Challa A, Noorwali AA, Bevington A, Russell RG. Bone; 1986; 7(4):255-9. PubMed ID: 3094565 [Abstract] [Full Text] [Related]
3. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. Tenenhouse HS, Scriver CR. J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070 [Abstract] [Full Text] [Related]
4. Hypophosphataemic osteomalacia and myopathy: studies with nuclear magnetic resonance spectroscopy. Smith R, Newman RJ, Radda GK, Stokes M, Young A. Clin Sci (Lond); 1984 Nov; 67(5):505-9. PubMed ID: 6478751 [Abstract] [Full Text] [Related]
5. Phosphate metabolism in erythrocytes of critically ill patients. Bevington A, Asbury AJ, Preston CJ, Russell RG. Clin Sci (Lond); 1985 Oct; 69(4):435-40. PubMed ID: 4042545 [Abstract] [Full Text] [Related]
6. Effects of a diphosphonate (disodium etidronate: EHDP) on phosphate metabolism in Paget's disease of bone, primary hyperparathyroidism and type I hypophosphataemic rickets. Walton RJ, Smith R, Russell RG. Calcif Tissue Res; 1976 Aug; 21 Suppl():339-43. PubMed ID: 182335 [No Abstract] [Full Text] [Related]
7. Erythrocyte phosphate metabolism and pH in vitro: a model for clinical phosphate disorders in acidosis and alkalosis. Kemp GJ, Bevington A, Russell RG. Miner Electrolyte Metab; 1988 Aug; 14(5):266-70. PubMed ID: 3173264 [Abstract] [Full Text] [Related]
8. A technique for the measurement of orthophosphate in human erythrocytes, and some studies of its determinants. Challa A, Bevington A, Angier CM, Asbury AJ, Preston CJ, Russell RG. Clin Sci (Lond); 1985 Oct; 69(4):429-34. PubMed ID: 4042544 [Abstract] [Full Text] [Related]
9. 31P and 35Cl nuclear magnetic resonance measurements of anion transport in human erythrocytes. Brauer M, Spread CY, Reithmeier RA, Sykes BD. J Biol Chem; 1985 Sep 25; 260(21):11643-50. PubMed ID: 4044573 [Abstract] [Full Text] [Related]
12. Phosphorus nuclear magnetic resonance studies on the effect of duration of contraction in bull-frog skeletal muscles. Kawano Y, Tanokura M, Yamada K. J Physiol; 1988 Dec 25; 407():243-61. PubMed ID: 3267189 [Abstract] [Full Text] [Related]
13. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy. Sarpel G, Lubansky HJ, Danon MJ, Omachi A. Arch Neurol; 1981 May 25; 38(5):271-4. PubMed ID: 7224909 [Abstract] [Full Text] [Related]
15. Pi trapping in glycogenolytic pathway can explain transient Pi disappearance during recovery from muscular exercise. A 31P NMR study in the human. Bendahan D, Confort-Gouny S, Kozak-Reiss G, Cozzone PJ. FEBS Lett; 1990 Sep 03; 269(2):402-5. PubMed ID: 2401366 [Abstract] [Full Text] [Related]
17. 32P-labelling anomalies in human erythrocytes. Is there more than one pool of cellular Pi? Kemp GJ, Bevington A, Khodja D, Challa A, Russell RG. Biochem J; 1989 Dec 15; 264(3):729-36. PubMed ID: 2695064 [Abstract] [Full Text] [Related]