These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 3026249

  • 1. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source.
    Chen LI, Chen CH.
    Arch Biochem Biophys; 1986 Dec; 251(2):606-15. PubMed ID: 3026249
    [Abstract] [Full Text] [Related]

  • 2. Energetic studies of lactose active transport in Escherichia coli membrane vesicles.
    Chen LI, Chen CH.
    Arch Biochem Biophys; 1986 May 01; 246(2):515-24. PubMed ID: 3010862
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+.
    Kaczorowski GJ, Robertson DE, Kaback HR.
    Biochemistry; 1979 Aug 21; 18(17):3697-704. PubMed ID: 38837
    [No Abstract] [Full Text] [Related]

  • 4. Characterization of the specific pyruvate transport system in Escherichia coli K-12.
    Lang VJ, Leystra-Lantz C, Cook RA.
    J Bacteriol; 1987 Jan 21; 169(1):380-5. PubMed ID: 3025181
    [Abstract] [Full Text] [Related]

  • 5. Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles.
    Letellier L, Shechter E.
    Eur J Biochem; 1979 Dec 17; 102(2):441-7. PubMed ID: 118877
    [Abstract] [Full Text] [Related]

  • 6. Energetics and molecular biology of active transport in bacterial membrane vesicles.
    Kaback HR, Ramos S, Robertson DE, Stroobant P, Tokuda H.
    J Supramol Struct; 1977 Dec 17; 7(3-4):443-61. PubMed ID: 357844
    [Abstract] [Full Text] [Related]

  • 7. Transport studies in bacterial membrane vesicles.
    Kaback HR.
    Science; 1974 Dec 06; 186(4167):882-92. PubMed ID: 4620043
    [Abstract] [Full Text] [Related]

  • 8. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR.
    Symp Soc Exp Biol; 1973 Dec 06; 27():145-74. PubMed ID: 4594375
    [No Abstract] [Full Text] [Related]

  • 9. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW, Patel L, Rottenberg H, Kaback HR.
    Biochemistry; 1980 Jan 08; 19(1):1-9. PubMed ID: 6986161
    [Abstract] [Full Text] [Related]

  • 10. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG, Gitter BD, Rowe JJ.
    J Supramol Struct; 1977 Jan 08; 7(1):49-59. PubMed ID: 415185
    [Abstract] [Full Text] [Related]

  • 11. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase.
    Matsushita K, Kaback HR.
    Biochemistry; 1986 May 06; 25(9):2321-7. PubMed ID: 3013300
    [Abstract] [Full Text] [Related]

  • 12. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S, Schuldiner S, Kaback HR.
    Proc Natl Acad Sci U S A; 1976 Jun 06; 73(6):1892-6. PubMed ID: 6961
    [Abstract] [Full Text] [Related]

  • 13. Enthalpy changes in the formation of the proton electrochemical potential and its components.
    Pu RY, Wang Y, Chen CH.
    Biophys Chem; 1995 Feb 06; 53(3):283-90. PubMed ID: 17020851
    [Abstract] [Full Text] [Related]

  • 14. Tobramycin uptake in Escherichia coli membrane vesicles.
    Leviton IM, Fraimow HS, Carrasco N, Dougherty TJ, Miller MH.
    Antimicrob Agents Chemother; 1995 Feb 06; 39(2):467-75. PubMed ID: 7726517
    [Abstract] [Full Text] [Related]

  • 15. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.
    Friedberg I, Kaback HR.
    J Bacteriol; 1980 May 06; 142(2):651-8. PubMed ID: 7380805
    [Abstract] [Full Text] [Related]

  • 16. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli.
    Stroobant P, Kaback HR.
    Proc Natl Acad Sci U S A; 1975 Oct 06; 72(10):3970-4. PubMed ID: 672
    [Abstract] [Full Text] [Related]

  • 17. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport.
    Hong JS, Kaback HR.
    Proc Natl Acad Sci U S A; 1972 Nov 06; 69(11):3336-40. PubMed ID: 4343963
    [Abstract] [Full Text] [Related]

  • 18. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG, Hodge TW, Rake JB, Yarbrough JM.
    Can J Microbiol; 1979 Jul 06; 25(7):798-802. PubMed ID: 113071
    [Abstract] [Full Text] [Related]

  • 19. The effects of partial and selective reduction in the components of the proton-motive force on lactose uptake in Escherichia coli.
    Ahmed S, Booth IR.
    Biochem J; 1981 Dec 15; 200(3):583-9. PubMed ID: 6282254
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.