These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


659 related items for PubMed ID: 3026557

  • 1. Increased food intake after opioid microinjections into nucleus accumbens and ventral tegmental area of rat.
    Mucha RF, Iversen SD.
    Brain Res; 1986 Nov 12; 397(2):214-24. PubMed ID: 3026557
    [Abstract] [Full Text] [Related]

  • 2. Sensitization occurs to the locomotor effects of morphine and the specific mu opioid receptor agonist, DAGO, administered repeatedly to the ventral tegmental area but not to the nucleus accumbens.
    Vezina P, Kalivas PW, Stewart J.
    Brain Res; 1987 Aug 04; 417(1):51-8. PubMed ID: 3040185
    [Abstract] [Full Text] [Related]

  • 3. Chronic systemic administration of amphetamine increases food intake to morphine, but not to U50-488H, microinjected into the ventral tegmental area in rats.
    Nencini P, Stewart J.
    Brain Res; 1990 Sep 17; 527(2):254-8. PubMed ID: 2174718
    [Abstract] [Full Text] [Related]

  • 4. [Toxophilic effects of morphinomimetic substances. Dopamine/enkephalin interactions in the ventral tegmental area and in the nucleus accumbens].
    Stinus L, Cesselin F, Deminière JM, Bourgouin S, Hamon M, Le Moal M.
    Encephale; 1989 Sep 17; 15 Spec No():95-104. PubMed ID: 2545434
    [No Abstract] [Full Text] [Related]

  • 5. Mu opioid receptor involvement in enkephalin activation of dopamine neurons in the ventral tegmental area.
    Latimer LG, Duffy P, Kalivas PW.
    J Pharmacol Exp Ther; 1987 Apr 17; 241(1):328-37. PubMed ID: 3033208
    [Abstract] [Full Text] [Related]

  • 6. Site of rewarding action of morphine in the mesolimbic system determined by intracranial electrical self-stimulation.
    van Wolfswinkel L, van Ree JM.
    Brain Res; 1985 Dec 09; 358(1-2):349-53. PubMed ID: 4075126
    [Abstract] [Full Text] [Related]

  • 7. Amphetamine administered to the ventral tegmental area but not to the nucleus accumbens sensitizes rats to systemic morphine: lack of conditioned effects.
    Vezina P, Stewart J.
    Brain Res; 1990 May 14; 516(1):99-106. PubMed ID: 2364286
    [Abstract] [Full Text] [Related]

  • 8. Facilitation of self-stimulation of ventral tegmentum by microinjection of opioid receptor subtype agonists.
    Singh J, Desiraju T, Nagaraja TN, Raju TR.
    Physiol Behav; 1994 Apr 14; 55(4):627-31. PubMed ID: 7910690
    [Abstract] [Full Text] [Related]

  • 9. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies.
    Devine DP, Leone P, Pocock D, Wise RA.
    J Pharmacol Exp Ther; 1993 Sep 14; 266(3):1236-46. PubMed ID: 7690399
    [Abstract] [Full Text] [Related]

  • 10. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens.
    MacDonald AF, Billington CJ, Levine AS.
    Brain Res; 2004 Aug 20; 1018(1):78-85. PubMed ID: 15262208
    [Abstract] [Full Text] [Related]

  • 11. Contraversive circling induced by ventral tegmental microinjections of moderate doses of morphine and [D-Pen2, D-Pen5]enkephalin.
    Jenck F, Bozarth M, Wise RA.
    Brain Res; 1988 May 31; 450(1-2):382-6. PubMed ID: 3401719
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of opioid systems in the hypothalamus as well as the mesolimbic area suppresses feeding behavior of mice.
    Ikeda H, Ardianto C, Yonemochi N, Yang L, Ohashi T, Ikegami M, Nagase H, Kamei J.
    Neuroscience; 2015 Dec 17; 311():9-21. PubMed ID: 26454026
    [Abstract] [Full Text] [Related]

  • 13. Opioid site in nucleus accumbens shell mediates eating and hedonic 'liking' for food: map based on microinjection Fos plumes.
    Peciña S, Berridge KC.
    Brain Res; 2000 Apr 28; 863(1-2):71-86. PubMed ID: 10773195
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Sensitization to repeated enkephalin administration into the ventral tegmental area of the rat. I. Behavioral characterization.
    Kalivas PW, Taylor S, Miller JS.
    J Pharmacol Exp Ther; 1985 Nov 28; 235(2):537-43. PubMed ID: 2865357
    [Abstract] [Full Text] [Related]

  • 16. Intra-VTA injections of the mu-opioid antagonist CTOP enhance locomotor activity.
    Badiani A, Leone P, Stewart J.
    Brain Res; 1995 Aug 28; 690(1):112-6. PubMed ID: 7496796
    [Abstract] [Full Text] [Related]

  • 17. Dopamine and conditioned reinforcement. II. Contrasting effects of amphetamine microinjection into the nucleus accumbens with peptide microinjection into the ventral tegmental area.
    Kelley AE, Delfs JM.
    Psychopharmacology (Berl); 1991 Aug 28; 103(2):197-203. PubMed ID: 1709289
    [Abstract] [Full Text] [Related]

  • 18. Comparative studies of the ingestive behaviors produced by microinjections of muscimol into the midbrain raphe nuclei of the ventral tegmental area of the rat.
    Klitenick MA, Wirtshafter D.
    Life Sci; 1988 Aug 28; 42(7):775-82. PubMed ID: 3339955
    [Abstract] [Full Text] [Related]

  • 19. Opioid receptor subtypes associated with ventral tegmental facilitation and periaqueductal gray inhibition of feeding.
    Jenck F, Quirion R, Wise RA.
    Brain Res; 1987 Oct 13; 423(1-2):39-44. PubMed ID: 2823993
    [Abstract] [Full Text] [Related]

  • 20. Enkephalin release into the ventral tegmental area in response to stress: modulation of mesocorticolimbic dopamine.
    Kalivas PW, Abhold R.
    Brain Res; 1987 Jun 30; 414(2):339-48. PubMed ID: 3620936
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.