These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
270 related items for PubMed ID: 30267586
1. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation. Emerson DF, Woolston BM, Liu N, Donnelly M, Currie DH, Stephanopoulos G. Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586 [Abstract] [Full Text] [Related]
2. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene. Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM. Appl Environ Microbiol; 2018 Jan 01; 84(1):. PubMed ID: 29054870 [Abstract] [Full Text] [Related]
3. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Appl Environ Microbiol; 2011 May 01; 77(9):2882-6. PubMed ID: 21378039 [Abstract] [Full Text] [Related]
4. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii. Yi J, Huang H, Liang J, Wang R, Liu Z, Li F, Wang S. Microbiol Spectr; 2021 Oct 31; 9(2):e0095821. PubMed ID: 34643446 [Abstract] [Full Text] [Related]
5. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F, Henstra AM, Winzer K, Köpke M, Simpson SD, Minton NP. mBio; 2016 May 24; 7(3):. PubMed ID: 27222467 [Abstract] [Full Text] [Related]
6. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. Ueki T, Nevin KP, Woodard TL, Lovley DR. mBio; 2014 Oct 21; 5(5):e01636-14. PubMed ID: 25336453 [Abstract] [Full Text] [Related]
7. Bacterial Anaerobic Synthesis Gas (Syngas) and CO2+H2 Fermentation. Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P. Adv Appl Microbiol; 2018 Oct 21; 103():143-221. PubMed ID: 29914657 [Abstract] [Full Text] [Related]
8. 13C-metabolic flux analysis of Clostridium ljungdahlii illuminates its core metabolism under mixotrophic culture conditions. Dahle ML, Papoutsakis ET, Antoniewicz MR. Metab Eng; 2022 Jul 21; 72():161-170. PubMed ID: 35307558 [Abstract] [Full Text] [Related]
16. A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life. Spahn S, Brandt K, Müller V. Arch Microbiol; 2015 Aug 21; 197(6):745-51. PubMed ID: 25820826 [Abstract] [Full Text] [Related]
17. Clostridium ljungdahlii represents a microbial production platform based on syngas. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P. Proc Natl Acad Sci U S A; 2010 Jul 20; 107(29):13087-92. PubMed ID: 20616070 [Abstract] [Full Text] [Related]
18. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Islam MA, Hadadi N, Ataman M, Hatzimanikatis V, Stephanopoulos G. Metab Eng; 2017 May 20; 41():173-181. PubMed ID: 28433737 [Abstract] [Full Text] [Related]