These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 30271139
21. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, Kim BH. Mater Sci Eng C Mater Biol Appl; 2017 May 01; 74():525-535. PubMed ID: 28254327 [Abstract] [Full Text] [Related]
23. Mesoporous magnesium silicate-incorporated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) bioactive composite beneficial to osteoblast behaviors. Niu Y, Dong W, Guo H, Deng Y, Guo L, An X, He D, Wei J, Li M. Int J Nanomedicine; 2014 May 01; 9():2665-75. PubMed ID: 24920903 [Abstract] [Full Text] [Related]
24. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Wang Z, Zheng B, Yu X, Shi Y, Zhou X, Gao B, He F, Tam MS, Wang H, Cheang LH, Zheng X, Wu T. Int J Biol Macromol; 2024 Oct 01; 277(Pt 2):134185. PubMed ID: 39074694 [Abstract] [Full Text] [Related]
25. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. Yun HS, Kim SH, Khang D, Choi J, Kim HH, Kang M. Int J Nanomedicine; 2011 Oct 01; 6():2521-31. PubMed ID: 22072886 [Abstract] [Full Text] [Related]
26. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E. Biomed Mater; 2013 Aug 01; 8(4):045011. PubMed ID: 23804651 [Abstract] [Full Text] [Related]
27. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. Heo SY, Ko SC, Oh GW, Kim N, Choi IW, Park WS, Jung WK. J Biomed Mater Res B Appl Biomater; 2019 Aug 01; 107(6):1937-1944. PubMed ID: 30508311 [Abstract] [Full Text] [Related]
28. Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair. Liu Y, Wang R, Chen S, Xu Z, Wang Q, Yuan P, Zhou Y, Zhang Y, Chen J. Int J Biol Macromol; 2020 Apr 01; 148():153-162. PubMed ID: 31935409 [Abstract] [Full Text] [Related]
29. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Kim JA, Lim J, Naren R, Yun HS, Park EK. Acta Biomater; 2016 Oct 15; 44():155-67. PubMed ID: 27554019 [Abstract] [Full Text] [Related]
30. Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Ródenas-Rochina J, Ribelles JL, Lebourg M. J Mater Sci Mater Med; 2013 May 15; 24(5):1293-308. PubMed ID: 23417519 [Abstract] [Full Text] [Related]
31. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating. Kim BS, Yang SS, Park H, Lee SH, Cho YS, Lee J. J Biomater Sci Polym Ed; 2017 Sep 15; 28(13):1256-1270. PubMed ID: 28598722 [Abstract] [Full Text] [Related]
32. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite. Zhao Q, Tang H, Ren L, Wei J. Int J Nanomedicine; 2020 Sep 15; 15():7279-7295. PubMed ID: 33061381 [Abstract] [Full Text] [Related]
33. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. Lin YH, Chiu YC, Shen YF, Wu YA, Shie MY. J Mater Sci Mater Med; 2017 Dec 27; 29(1):11. PubMed ID: 29282550 [Abstract] [Full Text] [Related]
34. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X, Gao C, Jiang J, Wu Y, Zhu P, Chen G. Biomed Mater; 2019 Sep 09; 14(6):065003. PubMed ID: 31382255 [Abstract] [Full Text] [Related]
35. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI, Lu ZF, Li JJ, Ellis-Behnke R, Kaplan DL, Zreiqat H. Acta Biomater; 2012 Jan 09; 8(1):302-12. PubMed ID: 22023750 [Abstract] [Full Text] [Related]
36. 3D-printed polycaprolactone/tricalcium silicate scaffolds modified with decellularized bone ECM-oxidized alginate for bone tissue engineering. Menarbazari AA, Mansoori-Kermani A, Mashayekhan S, Soleimani A. Int J Biol Macromol; 2024 Apr 09; 265(Pt 1):130827. PubMed ID: 38484823 [Abstract] [Full Text] [Related]
37. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y, Hu N, Liu J, Zhai X, Wu M, Hu C, Li L, Lai Y, Pan H, Lu WW, Zhang X, Luo Y, Ruan C. ACS Appl Mater Interfaces; 2019 Mar 06; 11(9):9415-9424. PubMed ID: 30698946 [Abstract] [Full Text] [Related]
38. Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, Tahriri M, Jazayeri HE, Tayebi L. Mater Sci Eng C Mater Biol Appl; 2017 Jan 01; 70(Pt 1):586-598. PubMed ID: 27770931 [Abstract] [Full Text] [Related]
39. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite. He D, Dong W, Tang S, Wei J, Liu Z, Gu X, Li M, Guo H, Niu Y. J Mater Sci Mater Med; 2014 Jun 01; 25(6):1415-24. PubMed ID: 24595904 [Abstract] [Full Text] [Related]
40. 3D-printed magnesium-doped micro-nano bioactive glass composite scaffolds repair critical bone defects by promoting osteogenesis, angiogenesis, and immunomodulation. Dai K, Zhao F, Zhang W, Chen D, Hang F, Zou X, Chen X. Biomed Mater; 2024 Oct 16; 19(6):. PubMed ID: 39312943 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]